数的数学的历史发展过程史

1数字的发展史_百度文库
您的浏览器Javascript被禁用,需开启后体验完整功能,
享专业文档下载特权
&赠共享文档下载特权
&100W篇文档免费专享
&每天抽奖多种福利
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
1数字的发展史
阅读已结束,下载本文需要
定制HR最喜欢的简历
你可能喜欢数的发展史
我的图书馆
数的发展史
来源:海韵互联  提到数,大家都不陌生。小学期间我们学习了自然数和正分数;在初一学习了负数以后,解决了在正有理数不够减的问题,数的范围扩充为有理数;在初二又学习了无理数,解决了开方开不尽的矛盾,数的范围进一步扩充为实数;在高中,我们为了解方程的需要又引入了虚数单位i,数系最终达到复数系。实际上,时至今日数系已构造得非常的完备和缜密。然而你是否知道,数系的形成和发展并非完全遵循上述演变过程,又是否知道人类智慧在此过程中经历的种种曲折和艰辛。  一、 古代数字及计数法  人类最初完全没有数量的概念。而是在漫长的生活实践中,由于记事和分配生活用品等方面的需要,才逐渐产生了数的概念。比如捕获了一头野兽,就用1块石子代表。捕获了3头,就放3块石子。“结绳记事"也是地球上许多相隔很近的古代人类共同做过的事。《周易·系辞下》记载“上古结绳而治,后世圣人,易之以书契”。东汉郑玄称:“事大,大结其绳;事小,小结其绳。结之多少,随物众寡”。以结绳和书契记数的方法遍及世界各地。  数的概念最初不论在哪个地区都是1、2、3、4……这样的自然数开始的,但是记数的符号却大不相同。古代巴比伦人的数字用点来表示,五个点表示5,八个点表示8,九个点表示9,点太多,数不清时,发明了专用的计数符号,“&”表示10,“T”表示360等等;在中国,一二三四五六七八九十百千万这13个数字在甲骨文中就已经出现。古罗马的数字相当进步。罗马数字的符号一共只有7个:I(代表1)、V(代表5)、X(代表10)、L(代表50)、C代表100)、D(代表500)、M(代表1,000)。这7个符号位置上不论怎样变化,它所代表的数字都是不变的。它们按照下列规律组合起来,就能表示任何数。  1、重复次数:一个罗马数字符号重复几次,就表示这个数的几倍。如:“III”表示“3”;“XXX”表示“30”。   2、右加左减:一个代表大数字的符号右边附一个代表小数字的符号,就表示大数字加小数字,如“VI”表示“6”,“DC”表示“600”。一个代表大数字的符号左边附一个代表小数字的符号,就表示大数字减去小数字的数目,如“IV”表示“4”,“XL”表示“40”,“VD”表示“495”。   3、上加横线:在罗马数字上加一横线,表示这个数字的一千倍。随着人类社会的进步,数字也在逐渐变大,即开始变得无穷无尽。然而代表数的符号却只有那么不多的几个或十几个,怎么办呢?只有把几个符号拼凑在一起表示更多的数,这就要个规则。计数的规则计数法。历史上,在不同的时代,不同的地域,不同的文化中产生计数制度可以说是五花八门,不一而足。主要介绍一下几种:  ①、简单累数制如罗马数字所采用 :3888=MMMDCCCLXXXVIII。  ②、分级符号制如古埃及僧侣文字:10,20,……90以及100,200,……900等等都采用特殊的符号来表示。  ③、乘法累数制如在中国:214557=二十一万四千五百五十七。  ④、位置制计数法:即今天所说的阿拉伯数码的计数方法。阿拉伯数字实际上是印度人发明的,只不过有阿拉伯人传播到欧洲,经过改进并发扬光大并被称作阿拉伯数字。位置制计数法的出现,为一切计算都提供了极大地方便,真可谓数系发展的第一个里程碑。这就是自然数系发展的简过程。  二、有理数系  位置制记数法的出现,标志着人类掌握的数的语言,已从少量的文字个体,发展到了一个具有完善运算规则的数系。人类第一个认识的数系,就是常说的“自然数系”。  随着生产、生活的需要,人们发现,仅仅能表示自然数是远远不行的。一旦要知道一块地的面积,一段绳子的长度,一块肉或一袋面粉的重量,自然数就不够用了。也就是说,人们在生产和生活中开始使用尺子、量器和称的时候,分数就应运而生了。  中国古代的数学著作《九章算术》里最早论述了分数运算的系统方法。这在印度出现于7世纪,比我国晚400多年。欧洲更要推迟1400多年。  同样,负数也是在生产实践中产生的。人们在生活中经常会遇到各种相反意义的量。比如,在记帐时有余有亏;在计算粮仓存米时,有时要记进粮食,有时要记出粮食。为了方便,人们就考虑了相反意义的数来表示。于是人们引入了正负数这个概念,把余钱进粮食记为正,把亏钱、出粮食记为负。我国三国时期的学者刘徽在建立负数的概念上有重大贡献。刘徽首先给出了正负数的定义,他说:“今两算得失相反,要令正负以名之。”意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们。   我国古代著名的数学专著《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之。”这里的“名”就是“号”,“除”就是“减”,“相益”、“相除”就是两数的绝对值“相加”、“相减”,“无”就是“零”。用现在的话说就是:“正负数的加减法则是:同符号两数相减,等于其绝对值相减,异号两数相减,等于其绝对值相加。零减正数得负数,零减负数得正数。异号两数相加,等于其绝对值相减,同号两数相加,等于其绝对值相加。零加正数等于正数,零加负数等于负数。”   这段关于正负数的运算法则的叙述是完全正确的,与现在的法则完全一致!负数的引入是我国数学家杰出的贡献之一。  负数是通过阿拉伯人的著作传到了欧洲,然而在16世纪和17世纪的大多数数学家并不承认它们是数,或者即使承认了也并不认为它们是方程的根。  三、实数理论的完善  在数字的发展过程中,一件不愉快的事情发生了。在公元前4世纪左右的古希腊有一个毕达哥拉斯学派,是一个研究数学、科学和哲学的团体。他的基本观点之一是“万物皆数”,又认为数就是正整数,正整数也就是组成物质的基本粒子——原子。他们觉得线段好比是一串珠子,两条线段长度之比,也就是各自包含的小珠子的个数比。当然可以用整数之比——分数——表示。但是学派中的一个青年希帕苏斯却发现正方形的边长与对角线之比不能用整数比表示,即不是分数。他百思不得其解,最后认定这是一个从未见过的新数。这个新数的发现,使毕达哥拉斯学派感到震惊,动摇了他们哲学思想的核心。为了保持支撑世界的数学大厦不要坍塌,希帕苏斯被丢进大海淹死了。这就是第一个无理数诞生的过程。无理数的发现,击碎了毕达哥拉斯学派“万物皆数”的美梦。同时暴露出有理数系的缺陷:一条直线上的有理数尽管是“稠密”,但是它却漏出了许多“孔隙”,而且这种“孔隙”多的“不可胜数”。这样,古希腊人把有理数视为是连续衔接的那种算术连续统的设想,就彻底的破灭了。  400多年后,人们已会记算许多角度的三角函数值,这些值绝大多数是无理数。到了1500年前后,人们不但会解二次方程式,而且开始解一些特殊的三次方程式了。这些方程的根,很多是无理数。又过了不到一百年,纳皮尔发现了对数。我们知道,有理数的对数差不多都是无理数。无理数的广泛使用,促使越来越多的数学家开始探讨无理数的实质。  无理数是什么?法国数学家柯西给出了回答:无理数是有理数序列的极限。然而按照柯西的极限定义,所谓有理数序列的极限,意即预先存在一个确定的数,使它与序列中各数的差值,当序列趋于无穷时,可以任意小。但是,这个预先存在的“数”,又从何而来呢?在柯西看来,有理序列的极限,似乎是先验地存在的。这表明,柯西尽管是那个时代大分析学家,但仍未能摆脱两千多年来以几何直觉为立论基础的传统观念的影响  1872年,是近代数学史上最值得纪念的一年。这一年,克莱因(F.Kline,)提出了著名的“埃尔朗根纲领”(Erlanger Programm),维尔斯特拉斯给出了处处连续但处处不可微函数的著名例子。也正是在这一年,实数的三大派理论:戴德金“分割”理论;康托的“基本序列”理论,以及维尔斯特拉斯的“有界单调序列”理论,同时在德国出现了。实数的三大派理论本质上是对无理数给出严格定义,从而建立了完备的实数域。实数域的构造成功,使得两千多年来存在于算术与几何之间的鸿沟得以完全填平,无理数不再是“无理的数”了,古希腊人的算术连续统的设想,也终于在严格的科学意义下得以实现。  四、复数的扩张  复数系的建立,经历了一个漫长的过程。  1545年意大利的数学家卡丹在解一元二次方程和一元三次方程时,分别得出类似今天的结果,,由于负数在实数系没有平方根,于是他研究了类似的新数,并进行了计算。  1637年,法国数学家笛卡尔正式使用“实数”、“虚数”这两个名词。此后,德国的数学家莱布尼兹、瑞士的数学家欧拉和法国数学家棣莫弗等研究了虚数与对数函数、三角函数之间的关系。除了解方程外,还把他应用于微积分方面,得出很多有价值的结果。欧拉还首先用i来表示-1的平方根。  1797年,挪威数学家维赛尔在平面引入数轴,以实轴和虚轴所确定的平面向量表示这类新数,不同的向量对应不同的点,因而表示的复数也互不相同。他还用几何术语定义了这类新数与向量的运算,建立了平行四边形法则,这样,它实际上已揭示了这类新数及其运算的几何意义,但在当时未引起人们的注意。  1806年,瑞士数学家阿甘德首先把这类新数表示成三角形式,并把它们与平面内线段的旋转结合起来,例如分别被看成单位线段按照逆时针与顺时针方向旋转90度所得的结果。可以这样理解:一个实数乘以1,相当于原地没动;乘以-1,相当于向后转;乘以i ,相当于向左转;乘以-i,相当于向右转,这是复数的乘法。再来考虑复数的加法,+5,向右走5个单位;-5,向左走5个单位;+5i向上走5个单位;-5i向下走5个单位。  1816年,著名的德国数学家高斯在证明代数基本定理时应用并论述了这类新数,而且首次引进“复数”这个名词,把复数和复平面内的点一一对应起来,从而建立了复数的几何基础。  1837年,爱尔兰数学家哈密顿用有序实数对(a,b)定义了复数及其运算,并说明复数的加、乘运算满足实数的运算律;实数则被看成特殊的复数(a,0)。这样,历经三百年的努力,数系从实数系向复数系的扩张才得以完成。参考文献:1、张景中 漫话数学 &中国少年儿童出版社 20032、纪志刚 从计数法到复数域:数系理论的历史发展 上海交通大学学报 2003.6
喜欢该文的人也喜欢【图文】数的发展史_百度文库
您的浏览器Javascript被禁用,需开启后体验完整功能,
享专业文档下载特权
&赠共享文档下载特权
&100W篇文档免费专享
&每天抽奖多种福利
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
数的发展史
&&详细介绍了数的发展历程
阅读已结束,下载本文到电脑
定制HR最喜欢的简历
你可能喜欢数的发展史_百度知道
数的发展史
要一篇数学小论文,500字左右!...
要一篇数学小论文,500字左右!
答题抽奖
首次认真答题后
即可获得3次抽奖机会,100%中奖。
数字并不是阿拉伯人发明创造的,而是发源于古印度。数字后来被阿拉伯人用于经商而掌握,经改进,并传到了西方。西方人由于首先接触到阿拉伯人使用过这些数据,便误以为是他们发明的,所以便将这些title数字称为阿拉伯数字,造成了这一历史的误会。后来,随着在世界各地的普遍传播,大家都都认同了&阿拉伯数字&这个说法,使世界上很多地方的人都误认为是阿拉伯人发明的数字,实际上是阿拉伯人最早开始广泛使用数字。传到欧洲后,欧洲人非常喜爱这套方便适用的记数符号,尽管后来人们知道了事情的真相,但由于习惯了,就一直没有改正过来。数字是古代印度人在生产和实践中逐步创造出来的。在古代印度,进行城市建设时需要设计和规划,进行祭祀时需要计算日月星辰的运行,于是,数学计算就产生了。大约在公元前3000多年,印度河流域居民的数字就比较先进,而且采用了十进位的计算方法。到公元前三世纪,印度出现了整套的数字,但在各地区的写法并不完全一致,其中最有代表性的是婆罗门式:这一组数字在当时是比较常用的。它的特点是从&1&到&9&每个数都有专字。现代数字就是由这一组数字演化而来。在这一组数字中,还没有出现&0&(零)的符号。&0&这个数字是到了笈多王朝(公元320-550年)时期才出现的。公元四世纪完成的数学著作《太阳手册》中,已使用&0&的符号,当时只是实心小圆点&·&。后来,小圆点演化成为小圆圈&0&。这样,一套从&1&到&0&的数字就趋于完善了。这是古代印度人民对世界文化的巨大贡献。古印度发明的数字首先传到斯里兰卡、缅甸、柬埔寨等印度的近邻国家。
为你推荐:
其他类似问题
个人、企业类
违法有害信息,请在下方选择后提交
色情、暴力
我们会通过消息、邮箱等方式尽快将举报结果通知您。【数与形的概念】数学发展的历史 - 简书
【数与形的概念】数学发展的历史
【数与形的概念】数学发展的历史:数形概念的 古巴比伦数学成就 泥版上的文章摘要:数学的发展是以数和形两个基本概念为主干的,整个数学就是围绕数与形两个概念的提炼、演变和发展而发展的.数学发展史中—直存在着数与形两条并行不悖的发展路线,一条以发展计算为中心的算术代数路线,一条以发展形为主的几何路线,前者有两个源头,一个源头是独立发展的中国数学,另一源头是古巴比伦数…【数与形的概念】数学发展的历史:数形概念的
古巴比伦数学成就 泥版上的【编者按】数学是一门古老的学科,它伴随着人类文明的产生而产生,至少有四、五千年的历史。数学的最初的概念和原理在远古时代就萌芽了,经过四千多年世界许多民族的共同努力,才发展到今天这样内容丰富、分支众多、应用广泛的庞大系统。了解数学的发展历史有助于培养学生对学习数学的兴趣,下面的内容希望对他们能有所帮助!【数与形的概念】数学发展的历史:数形概念的
古巴比伦数学成就 泥版上的数学的发展是以数和形两个基本概念为主干的,整个数学就是围绕数与形两个概念的提炼、演变和发展而发展的。数学发展史中—直存在着数与形两条并行不悖的发展路线,一条以发展计算为中心的算术代数路线,一条以发展形为主的几何路线,前者有两个源头,一个源头是独立发展的中国数学,另一源头是古巴比伦数学。【数与形的概念】数学发展的历史:数形概念的
古巴比伦数学成就 泥版上的这一路线在古希腊亚里山大里亚时期进一步得到发展,在中国、印度和阿拉伯国家发扬光大,到17世纪的欧洲才形成完整的初等代数学。【数与形的概念】数学发展的历史:数形概念的
古巴比伦数学成就 泥版上的“形”的路线是以埃及数学为源头,在古希腊取得辉煌成就的初等几何学。这两种数学在17世纪在欧洲汇合,经过进一步发展,导致了解析几何的产生,产生了变量数学。随后由于微积分的产生,开始了数学的巨大变革,产生了数学分析这一厂“阔的领域,形成了代数、几何、分析三足鼎立的形势。【数与形的概念】数学发展的历史:数形概念的
古巴比伦数学成就 泥版上的18、19世纪由于数学的不断分化,代数、几何、分析形成了各自不同的研究领域.数学研究的对象日益扩展,数与形的概念不断扩大,日趋抽象化,以至不再有任何原始计算与简单图形的踪影了。【数与形的概念】数学发展的历史:数形概念的
古巴比伦数学成就 泥版上的几何不仅研究物质世界的空间形式,而且研究同空间形式和关系相似的其他形式和关系,产生了各种新“空间”:罗巴切夫斯基空间、射影空间、四维的黎曼空间、各种拓扑空间等都成为几何研究的对象。现代化数学所考察的对象是具有更普遍的“量”,如向量、矩阵、张量、旋量、超复数、群等,并且研究这些量的运算。【数与形的概念】数学发展的历史:数形概念的
古巴比伦数学成就 泥版上的这些运算在某种程度上和算术中的四则运算类似,但复杂得多。矢量是简单的例子,矢量的加法是按照平行四边形法则相加的。在现代代数中进行的抽象达到这样的程度,以致“量”这个术语也失去本身的意义,而一般地变成讨论“对象”了。【数与形的概念】数学发展的历史:数形概念的
古巴比伦数学成就 泥版上的对于这种“对象”可以进行同普通代数运算相似的运算.比如,两个相继进行的运动相当于一个总的运动,—公式的两种代数变换相当于一个总的变换等等。【数与形的概念】数学发展的历史:数形概念的
古巴比伦数学成就 泥版上的和这相应,可研究运动或变换所特有的一类“加法”.其他类似的运算也是这样在广泛抽象形式上研究的。分析的对象也大大发展。不但“数”是变的,在泛函分析中,函数本身也被看作是变的。【数与形的概念】数学发展的历史:数形概念的
古巴比伦数学成就 泥版上的某一给定函数的性质在这里不能单独地确定,而是在这个函数对另外一些函数的关系上确定的。因此考察的已经不是一些单个的函数,而是所有以这种或那种共同性质作为特征的函数的集合。函数的这种集合结合成“函数空间”。比如,考察平面上所有曲线的集合或一定力学系统的所有可能运动的集合,在单个曲线或运动用其他曲线或运动的关系上来确定曲线或运动的性质.现代数学常用的方法,是把一个个函数看作一个个“点”,而某类函数的全体看作一个“空间”,函数间的相异程度看作“点”之间的“距离”,由此得到各种无穷维的函数空间。比如一个微分积分方程组的求解,往往归结为相应函数空间中一个几何变换的不动点问题.数学对象的扩展使得数学应用的范围也大大扩展了。数学观念广泛引入物理学中,爱因斯坦把黎曼几何应用到广义相对论,冯·诺伊曼把希尔伯特空间应用到量子力学,杨振宁和米尔斯把纤维丛理论应用到规范场等等。从19世纪下半叶开始,即从克莱因用“群”的观点统各种度量几何开始,到康托尔建立集合论和公理化运动后,数学走向综合的趋势越来越明显。现代数学的发展促使数和形的概念不断深化,形成了多种多样的边缘学科。这些学科不仅没有加深各学科间的分离,而且导致了各学科的互相联系和渗透,使以前基本分离的领域互相沟通了起来,并且填满了基本学科之间中断了的部分。各门学科形成了一个牢固联系的有机整体。边缘学科不仅在相互邻接的领域产生。而且在相距很远的领域之间也不断发生,基础学科相互渗透产生了许多综合性学科。综合性学科的出现和蓬勃发展,标志着现代数学的发展已由学科领先阶段过渡到课题领先的新阶段。各学科之间的相互渗透,是数学中数和形两大基本概念紧密联系在一起的辩证法的反映。各门科学的数学化,使得数学和其他学科交叉结合,产生许多交叉学科,许多学科又派生出许多小的学科分支,这些分支学科不仅促进了各门学科的发展,而且也丰富和发展了数学学科本身。然而,不管数学各个学科经历着怎样的分、合、变、革,也不管数学内部怎样此消彼长,数学王国的疆土虽然在不断扩张之中,但始终是由数与形两大基本概念所控制。(内容摘自共读一本书-《数学史海览胜》)文章摘要:19世纪前期,考古学家在美索不达米亚挖掘出大约 50万块刻有楔形文字、跨跃巴比伦历史许多时期的泥书板,上面密密麻麻地刻有奇怪的符号,经研究其中有近400块被鉴定为载有数字表和一批数学问题的纯数学书板。…【编者按】19世纪前期,考古学家在美索不达米亚挖掘出大约 50万块刻有楔形文字、跨跃巴比伦历史许多时期的泥书板,上面密密麻麻地刻有奇怪的符号,经研究其中有近400块被鉴定为载有数字表和一批数学问题的纯数学书板。考古学家在十九世纪上半叶于美索不达米亚挖掘出大约50万块刻有楔形文字、跨跃巴比伦历史许多时期的泥书板。这些泥书板上有着密密麻麻的奇怪的符号,这些符号实际上就是巴比伦人所用的文字,人们称它为“楔形文字”。科学家经过研究发现,泥版上记载的,是巴比伦人已获得的知识,其中有近400块被鉴定为载有数字表和一批数学问题的纯数学书板,现在关于巴比伦的数学知识就源于分析这些原始文献。算术古代巴比伦人是具有高度计算技巧的计算家,其计算程序是借助乘法表、倒数表、平方表、立方表等数表来实现的。巴比伦人书写数字的方法,更值得我们注意。他们引入了以60为基底的位值制(60进制),希腊人、欧洲人直到16世纪亦将这系统运用于数学计算和天文学计算中,直至现在60进制仍被应用于角度、时间等记录上。比如,1米=10分米,1分钟=60秒等。代数古巴比伦人有丰富的代数知识,许多泥书板中载有一次和二次方程的问题,他们解二次方程的过程与今天的配方法、公式法一致。此外,他们还讨论了某些三次方程和含多个未知量的线性方程组问题。在1900B.C.~1600B.C.年间的一块泥板上(普林顿322号),记录了一个数表,经研究发现其中有两组数分别是边长为整数的直角三角形斜边边长和一个直角边边长,由此推出另一个直角边边长,亦即得出不定方程x2 y2=z2的整数解。几何古巴比伦的几何学与实际测量是有密切的联系。他们已有相似三角形之对应边成比例的知识,会计算简单平面图形的面积和简单立体体积。我们现在把圆周分为360等分,也应归功于古代巴比伦人。巴比伦几何学的主要特征更在于它的代数性质。例如,涉及平行于直角三角形一条边的横截线问题引出了二次方程;讨论棱椎的平头截体的体积时出现了三次方程。古巴比伦的数学成就在早期文明中达到了极高的水平,但积累的知识仅仅是观察和经验的结果,还缺乏理论上的依据。文章摘要:算术和代数是数学中最基础而又最古老的分支学科,两者有着密切的联系。算术是代数的基础,代数由算术演进而来。从算术演进到代数,是数学在思想方法上发生的一次重大突破。【编者按】数学的发展并不是一些新概念、新命题、新方法的简单积累,它包含着数学本身许多根本的变化,也即质的飞跃。历史上发生的数学思想方法的几次重大突破,就充分说明了这一点。算术和代数是数学中最基础而又最古老的分支学科,两者有着密切的联系。算术是代数的基础,代数由算术演进而来。从算术演进到代数,是数学在思想方法上发生的一次重大突破。一、代数学产生的历史必然性代数学作为数学的一个研究领域,其最初而又最基础的分支是初等代数。初等代数研究的对象是代数式的运算和方程的求解。从历史上看,初等代数是算术发展的继续和推广,算术自身运动的矛盾以及社会实践发展的需要,为初等代数的产生提供了前提和基础。我们知道,算术的主要内容是自然数、分数和小数的性质与四则运算。算术的产生,表明人类在现实世界数量关系认识上迈出了具有决定性意义的第一步。算术是人类社会实践活动中不可缺少的数学工具,在人类社会各部门都有广泛而重要的应用,离开算术这一数学工具,科学技术的进步几乎难以相象。在算术的发展过程中,由于算术理论和实践发展的要求,提出了许多新问题,其中一个重要问题就是算术解题法的局限性在很大程度上限制了数学的应用范围。算术解题法的局限性,主要表现在它只限于对具体的、已知的数进行运算,不允许有抽象的、未知的数参加运算。也就是说,利用算术解应用题时,首先要围绕所求的数量,收集和整理各种已知的数据,并依据问题的条件列出关于这些具体数据的算式,然后通过加、减、乘、除四则运算求出算式的结果。许多古老的数学应用问题,如行程问题、工程问题、流水问题、分配问题、盈亏问题等,都是借助这种方法求解的。算术解题法的关键是正确地列出算术,即通过加、减、乘、除符号把有关的已知数据连结起来,建立能够反映实际问题本质特征的数学模型。对于那些只具有简单数量关系的实际问题,列出相应的算式并不难,但对于那些具有复杂数量关系的实际问题,在列出相应的算式,往往就不是一件容易的事了,有时需要很高的技巧才行。特别是对于那些含有几个未知数的实际问题,要想通过建立已知数的算式来求解,有时甚至是不可能的。算术自身运算的局限性,不仅限制了数学的应用,而且也影响和束缚了数学自身的继续发展。随着数学自身和社会实践的深入发展,算术解题法的局限性日益暴露出来,于是一种新的解题法-代数解题法的产生也就成为历史的必然。代数解题法的基本思想是,首先依据问题的条件组成包含已知数和未知数的代数式,并按等量关系列出方程,然后通过对方程进行恒等变换求出未知数的值。初等代数的中心内容是解方程,因而通常把初等代数理解为解方程的科学。初等代数与算术的根本区别,在于前者允许把未知数作为运算的对象,后者则把未知数排斥在运算之外。如果说在算术中也论及某个未知数的话,那么,这个未知数也只能起运算结果符号等价物的作用,只能单独地处在等式的左边,静等等式右边的算式完成对具体数字的演算。也就是说,在算术中,未知数没有参加运算的权利。而在代数中,方程作为由已知数和未知数构成的条件等式,本身就意味着其中所包含的已知数和未知数有着同等的运算地位,即未知数也变成了运算的对象,和已知数一样,它们可以参与各种运算,并可以依照某种法则从乘式的一边移到另一边。解方程的过程,实质上就是通过对已知数和未知数的重新组合,把未知数转化为已知数的过程,即把未知数置于等式的一边,已知数置于等式的另一边。从这种意义上看,算术运算不过是代数运算的特殊情况,代数运算是算术运算的发展和推广。由于代数运算具有较大的普遍性和灵活性,因而代数的产生极大地扩展了数学的应用范围,许多算术无能为力的问题,在代数中却能轻而易举地得到解决。不仅如此,代数学的产生对整个数学的进程产生巨大而深远的影响,许多重大发现都与代数的思想方法有关。例如,对二次方程的求解,导致虚数的发现;对五次以上方程的求解,导致群论的诞生;把代数应用于几何问题,导致解析几何的创立等等。正因为如此,我们把代数的产生作为数学思想方法发生第一次重大转折的标志。二、代数学体系结构的形成“代数”一词,原意是指“解方程的科学”。因此,最初的代数学也就是初等代数。初等代数,作为一门独立的数学分支学科,其形成经历了一个漫长的历史过程,我们很难以某一个具体的年代作为它问世的标志。从历史上看,它大体上经过了三个不同的阶段:文词代数,即用文字语言来表述运算对象和过程;简字代数,即用简化了的文词来表示运算内容和步骤;符号代数,即普遍使用抽象的字母符号。从文词代数演进到符号代数的过程,也就是初等代数由不成熟到较为成熟的发育过程。在这个过程中,17世纪法国数学家笛卡尔做出了突出贡献。他是第一个提倡用x、y、z代表未知数的人,他提出和使用的许多符号,同现代的写法基本一致。随着数学的发展和社会实践的深化,代数学的研究对象不断得到扩大,其思想方法不断得到创新,代数学也就由低级形态演进到高级形态,由初等代数发展到高等代数。高等代数有着丰富的内容和众多的分支学科,其中最基本的分支学科有如下几个。线性代数:讨论线性方程(一次方程)的代数部分,其重要工具是行列式和矩阵。多项式代数:主要借助多项式的性质来讨论代数方程的根的计算和分布,包括整除性理论、最大公因式、因式分解定理、重因式等内容。群论:研究群的性质的代数学分支学科,属于抽象代数的一个领域。群是带有一种运算的抽象代数系统。群的概念是19世纪初由法国青年数学家伽罗华最先提出的,伽罗华由此成为群论的创立者。群论发展到现在,已经获得丰富的内容和广泛的应用。环论:研究环的性质的代数学分支学科,是正在发展着的一个抽象代数领域。环是带有二种运算的抽象代数系统,有许多独特的性质。一种特殊的环称为域,如果域的元素是数,则称为数域。以域的概念为基础,形成了抽象代数学的另一个领域-域论。布尔代数:也称二值代数、逻辑代数或开关代数,是带有三种运算的抽象代数系统。由英国数学家布尔于19世纪40年代创立。近几十年来,布尔代数在线路设计、自动化系统和电子计算机设计方面得到广泛应用。此外,还有格论、李代数和同调代数等分支学科。高等代数与初等代数在思想方法上有很大的差别。初等代数属于计算性的,并且只限于研究实数和复数等特定的数系,而高等代数是概念性、公理化的,它的对象是一般的抽象代数系统。因此,高等代数比初等代数具有更高的抽象性和更大的普遍性,这就使高等代数的应用范围更加广泛。向抽象性和普遍性方向发展,是现代代数学的一个重要特征。程晓龙,第40届IMO(1999年,罗马尼亚布加勒斯特)金牌获得者。熟悉了高中数学,就会觉得它所介绍的理论并不多,《代数》就是讲函数的观点和初等函数的性质、三角函数、复数、复向量的运算,数列和归纳原理、计数方法。《解析几何》介绍用数量化语言描述几何图形的方法和几种常用几何图形的数量性质。《立体几何》描述空间中点、线、面的位置、度量关系并着重介绍几种基本几何体。要学好高中数学,就应该对这些知识有整体的认识和把握,即理解他们所解决的问题在数学乃至实际中所起的作用。学习数学绝不是死记定理、公式,不是空洞的解题训练,仅注重其形式化的表面,是无法把握数学的实质的。数学的存在和发展是基于某种实际需要的,了解这种需要,即数学各部分的作用,有助于对数学这个有机整体的认识,不假思索的接受,难以导致对数学的真正了解,因此亲身接触活生生的数学就显得尤为重要。这就需要学习中对每个问题都能亲自思考、透彻理解。我通常习惯于在遇到新概念时,自己先分析、推导一下它的性质;碰到定理、公式时自己先试着证明一下,这样再学习书本上的内容时,与自己所思考的有种比较,对知识的体会就更多些,理解也能更深一点。比如说,这样做后就会比较清楚某个定理为什么会有这样的限制条件,在那些情况下适用等。清楚了逻辑上的推理之后,还应回过头来从总体上考虑一下这些结论,考虑一下它们所描述的事实与其它数学知识间的依赖关系。这样做也有助于从宏观上把握知识,对其主要观念有更深刻的领悟,最好是在一个部分的知识学完后,能花点时间整理一下这部分理论,理顺其主要知识点间的联系。这不是简单的复习,而是确定这些东西成为你自己的知识。它不是单纯的看书,而应该是了解之后的深入思考,甚至你可以撇开课本,仅仅靠思考和必要的演算来完成这一过程,尤其是在平时学习中,每次都是只对一小部分知识学习、做作业,比较零散,这种整体上的熟悉就显得很必要了。必要的习题不仅能帮助熟悉所学的知识,有些甚至能帮助理解所学的概念、定理,发掘知识更深层次上的内涵。它的另一个作用,即练习本身的作用,就是锻炼思维,而做完题之后的思考无论是对上述那一个方面都是大有裨益的,这就是做题不要局限于解决问题本身,有时可以想想问题所反映的结论,体会一下用到的方法和技巧,重要的是要明白为什么要用这种方法,即能理解方法的实质。做习题切不可因追求过多而忽略之后的反思,否则经常会出现一些无谓的反复,反而得不偿失。另外一点,就是要从不同的角度思考问题,不满足于已有的方法,即使已有的方法是最简的。从其它角度思考、解决问题能导致一些新的收获,这一点在做难度稍大的题时会更有用处。有些人学数学只是记下所有的定理公式,各类题型和相应的解法,这样做在学的知识比较少的时候也许还能对付,但一旦内容多了,就很难理清头绪。而掌握基本的解题思想方法却相对容易的多。一道题目的解答或许很长,但最主要的解题思想可能就只有一两条,大部分篇幅都是推理或运算。而且思想方法对数学的不同部分来说都是相通的,掌握它才是根本,才是应万变之策。解题方法绝不是毫无根据的灵感,必是解决问题过程中深思熟虑后应运而生的途径。因而,对解题方法,重要的是理解这种思维过程,即要透过现象看本质,思想方法源于解题的过程中,也只有通过解题过程中的独立思考、分析摸索才能掌握。如果有朝一日,你发现自己对数学中的知识理论和思想方法都了然于胸,那么你已经能很好地驾驭所学的知识了,再加上一些过硬的基本功,已足以应付一般的考试,但对于一个要真正学好数学的人来说,这些却远远不够。众所周知,数学需要严密的逻辑推理,但逻辑上的推理却不足以代表数学的全部。如本世纪的大数学家柯朗所说:“过分着重演绎一公式的数学特性可能失之偏颇,创造性发明以及起指导和推动作用的直觉的要素才是数学理论的核心。”数学很重要的几个因素就是就是逻辑与直觉、分析与创造、一般性与个别性,正是他们的综合交错作用才构成数学的丰富内涵。要学好数学,只有将自己置身于其中,亲自去体会、去发现。文章摘要:他创立了中国的群表示论,开启中国群表示论研究的大门.他毕生为教育做贡献.
一门科学的历史是那门科学中最宝贵的一部分,因为科学只能给我们知识,而历史却能给我们智慧。——傅鹰 数学的历史是重要的,它是文明史的有价值的组成部分,人类的进步和科学思想是一致的。—— F. Cajori 0、引言 数学发展到现在,已经成为科学世界中拥有100多个主要分支学科...
在人类的知识宝库中有三大类科学,即自然科学、社会科学、认识和思维的科学。自然科学又分为数学、物理学、化学、天文学、地理学、生物学、工程学、农学、医学等学科。数学是自然科学的一种,是其它科学的基础和工具。在世界上的几百卷百科全书中,它通常 是处于第一卷的地位。 从本质上看,数...
我想大家都有这样的体会:小学的时候你根本不知道初中数学是什么样,高中的时候你也根本想不到大学数学是什么样。而大学生,如果你不专注于数学,恐怕也不知道现代数学是什么模样。下面将分别从学数学的动机、数学不同学科的分类以及如何切实可行培养数学能力等几个方面阐述如何学习数学。 进入...
原文:WHAT IS GOOD MATHEMATICS?作者:Terence Tao(陶哲轩)译文:什么是好的数学?译者:卢昌海 译者序: 本文译自澳大利亚数学家 Terence Tao 的近作 “What is Good Mathematics?” Tao 是调和分析、 ...
这里我用的是白色的火龙果,加上酸奶之后味道会有一点酸,所以加入了少许的蜂蜜。喜欢的同学可以试试
题记: 总是一个人在夜深的时候,辗转难眠; 总是一个人在街角停足,不知何去何从; 总是一个人面对大海发呆,思绪万千; 总是一个人面对委屈,强忍泪水微笑; 总是一个人对着“医”字发呆,心中难掩的打怵; 行医路漫漫,总是一个人历经千难万险,直到遇见了你…… 直到遇见了你——尊敬...
谈谈我的心里话吧。这个平台我觉得我在这里说话是肆无忌惮的,因为没有人觉得我想法多。我很喜欢和自己对话。从小到大都这样。我是一个农村的小姑凉。曾经很悲观,现在转变成了一个特立独行的女子。小时,就和奶奶在一起。那个时候的农村,是很原生态的,我们去上学,需要走将近一个小时的路程,...
I do not know about your all the things, or ours, but the feelings for you is pure, without any impurities, I hope and also need to stick...

我要回帖

更多关于 数的发展史与生活关系 的文章

 

随机推荐