现在的多大电力变压器不用交基本电费为什么不用开关电源?

反击式开关电源变压器设计_百度文库
您的浏览器Javascript被禁用,需开启后体验完整功能,
享专业文档下载特权
&赠共享文档下载特权
&100W篇文档免费专享
&每天抽奖多种福利
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
反击式开关电源变压器设计
阅读已结束,下载本文需要
定制HR最喜欢的简历
下载文档到电脑,同时保存到云知识,更方便管理
加入VIP
还剩2页未读,
定制HR最喜欢的简历
你可能喜欢制约开关电源频率提升的局限是什么?
我的图书馆
制约开关电源频率提升的局限是什么?
【寒舞纪的回答(20票)】:
谢邀,我硕士阶段主要做的是逆变,对高频化这块没有什么实际的工程经验,认识还停留在理论层面,不过还是想试着答一下,下面的回答仅供参考。如果想进一步研究这个问题,建议邀请
1、器件的限制
对于一个开关管来说,在实际应用中,不是给个驱动就开,驱动撤掉就关了。它有开通延迟时间(tdon),上升时间(tr),关断延迟时间(tdoff),下降时间tf,对应的波形如下:
通俗的讲,开关管开通关断不是瞬间完成的,需要一定的时间,开关管本身的开关时间就限制了开关频率的提升。
以答主以前在台达实习,台达用在3kW的逆变器上的一款英飞凌600V的coolmos为例。看看这些具体的开关时间是多少
那么对于这个mos管来说,它的极限开关频率(在这种极限情况下,mos管刚开通就关断)fs=1/(16+12+83+5)ns=8.6MHz,当然,在实际应用中,由于要调节占空比,不可能让开关管一开通就关断,所以实际的极限频率是远低于8.6MHz的,所以器件本身的开关速度是限制开关频率的一个因素。那么对于这个mos管来说,它的极限开关频率(在这种极限情况下,mos管刚开通就关断)fs=1/(16+12+83+5)ns=8.6MHz,当然,在实际应用中,由于要调节占空比,不可能让开关管一开通就关断,所以实际的极限频率是远低于8.6MHz的,所以器件本身的开关速度是限制开关频率的一个因素。
2、开关损耗
当然,随着器件的进步,开关管开关的速度越来越快,尤其是在低压小功率场合,如果仅考虑器件本身的开关速度,开关频率可以run得非常高,但实际并没有,限制就在开关损耗上面。
下面给出开关管实际开通的时候对应的波形图
可以看到,开关管每开通一次,开关管DS的电压(Vds)和流过开关管的电流(Id)会存在交叠时间,从而造成开通损耗,关断亦然。假设每次开关管每开关一次产生的能量损耗是一定的,记为Esw,那么开关管的开关损耗功率就为Psw=Esw*fs,显然,开关频率越高,开关损耗越大。5M开关频率下开关损耗比500K要大10倍,这对于重视效率的开关电源来说,显然是不可接受的。所以,开关损耗是限制开关频率的第二因素。可以看到,开关管每开通一次,开关管DS的电压(Vds)和流过开关管的电流(Id)会存在交叠时间,从而造成开通损耗,关断亦然。假设每次开关管每开关一次产生的能量损耗是一定的,记为Esw,那么开关管的开关损耗功率就为Psw=Esw*fs,显然,开关频率越高,开关损耗越大。5M开关频率下开关损耗比500K要大10倍,这对于重视效率的开关电源来说,显然是不可接受的。所以,开关损耗是限制开关频率的第二因素。
3、软开关的困难
题主提到了软开关,没错,软开关确实是解决开关损耗的有力手段。而在各种研究软开关的paper上,提出了无数种让人眼花缭乱的软开关方案,似乎软开关能解决一切问题。但是实际工程应用和理论分析不同,实际工程追求的是低成本,高效率,高可靠性,那些需要添加一堆辅助电路,或者要非常精确控制的软开关方案在实际工程中其实都是不太被看好的,所以即使到现在,在工业界最常应用软开关的拓扑也只要移相全桥和一些谐振的拓扑(比如LLC),至于题主提到的flyback,没错,我也听说过有准谐振的flyback(但没研究过),但即使有类似的方案,对于能不能真正工程应用,题主也需要从我上面提到的几个问题去考量一下。
ps2 对于小功率高频电源,现在class E非常火,我觉得它火的原因就是电路简单,所以才能被工业界接受,题主有兴趣可以去研究下。
4、高频化带来的一系列问题
假设上面的一系列问题都解决了,真正做到高频化还需要解决一系列工程上的问题,比如在高频下,电路的寄生参数往往会严重影响电源的性能(如变压器原副边的寄生电容,变压器的漏感,PCB布线之间的寄生电感和寄生电容等等),造成一系列电压电流波形震荡和EMI的问题,如何消除寄生参数的影响,甚至进一步地,如何利用寄生参数为电路服务,都是有待研究的问题。
ps,对于高频化应用的实际工程应用的问题,还有很重要的一块是高频驱动电路的设计, 实验室这块做得比较好,可以邀请他来回答下。
当然,随着新器件(SiC, GaN)的兴起,开关电源高频化的研究方兴未艾,开关电源的高频化一定是趋势,而且有望给电力电子带来又一次革命。让我们拭目以待。
的补充,QR的flyback在工业上应用也很多了,但是作为谷底开通,并不是真正的ZVS,所以开关损耗还是不可忽略的。
的答案更好,建议多多关注他们的答案
【evansJoe的回答(35票)】:
谢谢几个朋友邀请,我在这里简单的提一些我个人的见解,和大家一起分享。
首先明确下题主提问的范围,题主所说的中小功率场合,我理解为0-10kW, 高频理解为1-3Mhz。MIT Dr. David 和南航张之梁教授在研究超高频20Mhz的开关电路,但是由于功率仅局限于20W之内,所以不再讨论的话题之内(真实原因是我不懂,哈哈)。
类似于在微电子产业中著名的摩尔定律,从1970年开始,电力电子变换器的功率密度大约每十年增加一倍。这和功率半导体发展的轨迹密切相关,受益于硅器件封装和沟道结构不断的发展,开关频率已经推到了兆赫兹级别,被动元件的体积不断减小,变换器提高了功率密度,但是高开关频率带来的高开关损耗、高磁芯损耗使得整个系统损耗大幅增加,散热系统也随之增加,所以现在阻碍电力电子变换器功率密度进一步提高的技术屏障在散热系统和高频电磁设计,以及先进的功率集成和封装技术。为了维持这个功率密度的发展速度,很多电力电子前沿研究已经转移到散热基板研究,被动元件集成等方面的研究,所以题主你明白我的意思了吗?就算你现在把开关频率提到很高,功率密度也是被这些因素制约的。下面我稍微展开来说下:
1.开关损耗
开关损耗确实是限制因素之一,但是氮化镓器件的推出已经让开关损耗在1-3Mhz这个范围内变得可以接受,我下面附一张图片,这是三家公司推出的650V的GaN device,可以看出最好的管子开通损耗已经4uJ,关断损耗在8uJ(测试条件在400V, 12A),还有一家叫RFMD的公司,其650V的管子基本可以和Transphorm平齐。而同电压电流等级的硅器件很多管子都还在以mJ为单位。
下面在贴出一张低压氮化镓和硅器件的比较,可以看出,总体来说,驱动损耗也会变得很小。
还有一点很重要,宽禁带半导体的工作结温很高,以目前的工艺来说,Sic的结温可以工作到200°,氮化镓可以工作到150°。而硅器件呢,我觉得最多100°就不得了。结温高,意味着相同损耗下,需要给宽禁带半导体设计的散热器表面积要小很多,何况宽禁带半导体的损耗本身还小。
但是开关频率的提高,往往只能使用QFN或者其他一些表贴器件减少封装寄生参数,这给散热系统带来了极大的挑战,原来To封装可以加散热器,减少到空气对流的热阻,而现在不行了。所以如果想在高频下工作,第一问题就是解决散热,把高开关损耗导出去,尤其是在kW级别,散热系统非常重要。现在学界解决这个问题的手段偏向于把器件做成独立封装,采用一种叫DCB的技术,用陶瓷基板散热,器件从陶瓷上表面到下表面的热阻基本为0.4°C/W(有些人也用metal core PCB, 但是要加绝缘层,热阻一般在4°C/W),而FR4为20°C/W。
总结一下,半导体不断在发展,开关损耗也在显著下降,而封装越来越小,现在来看,我们要做的是怎么把那些热量从那么小的表贴封装下散出去。 总结一下,半导体不断在发展,开关损耗也在显著下降,而封装越来越小,现在来看,我们要做的是怎么把那些热量从那么小的表贴封装下散出去。
2.EMI和干扰
在我接触EMI前,很多老工程师以他们有丰富的EMI调试经验来鄙视我们这些菜鸟,搞的我一直以为EMI是门玄学,也有很多人动不动就拿EMI出来吓人。我想说EMI确实很难理解,很难有精确的纸面设计,但是通过研究我们还是能知道大概趋势指导设计,而不是一些工程嘴里完全靠trial and error的流程。我先给出结论,EMI确实和开关频率不成线性关系,某些开关频率下,EMI滤波器的转折频率较高,但是总体趋势而言,是开关频率越高,EMI体积越小!
我知道很多人开始喷我了,怎么可能,di/dt和dv/dt都大了,怎么可能EMI滤波体积还小了。我想说一句,共模和差模滤波器的没有区别,相同的截止频率下,高频的衰减更大!就算你高频下共模噪声越大,但是你的记住,这个频率下LC滤波器的衰减更大,想想幅频曲线吧。为了说明这个结论,我给出一些定量分析结果。这些EMI分析均基于AC/DC三相整流,拓扑为维也纳整流。我分别给出了1Mhz和500Khz的共模噪声,可以看出,500khz共模滤波器需要的截止频率为19.2kHz,1MHz为31.2kHz。
这张图给出了不同频率下共模和差模滤波器转折频率的关系,可以看出,一些低频点EMI滤波器体现出了非常好的特性。例如70Khz,140Khz。而这两个开关频率是工业界常用的两个开关频率,非常讨巧,因为EMI噪声测试是150KHz到30MHz。不过这个也与拓扑有关。 这张图给出了不同频率下共模和差模滤波器转折频率的关系,可以看出,一些低频点EMI滤波器体现出了非常好的特性。例如70Khz,140Khz。而这两个开关频率是工业界常用的两个开关频率,非常讨巧,因为EMI噪声测试是150KHz到30MHz。不过这个也与拓扑有关。
以上数据均基于仿真,虽然不能精确的反应EMI噪声的大小,但是趋势肯定是正确的。说了这么多,我只想表明,开关频率的选取相当有学问。如果要以高功率密度为设计指标,开关频率并不是越高越好,而是有一个最佳转折点。下面2张图给出了维也纳整流器和BUCK-type整流器的功率密度趋势,可以看出,最佳功率密度点不是一个开关频率。对那些拍着脑瓜选开关频率,解决EMI问题并且鄙视过我的老工程师,我还是怀有很大敬意的,但是我想说的是,如果真正想设计一台最高功率密度的变换器,详细的考证是值得的,还不是单纯依靠经验,况且经验背后也是一定有理论支持。
我不禁问个问题,都有EMI滤波器,EMI噪声都符合标准,为啥高频干扰大。难道大家在实际工程遇到高频干扰是个假象?不是的,举1个非常简单的例子,剩下的自己思考吧。 我不禁问个问题,都有EMI滤波器,EMI噪声都符合标准,为啥高频干扰大。难道大家在实际工程遇到高频干扰是个假象?不是的,举1个非常简单的例子,剩下的自己思考吧。
在输入电压较高的场合中,一般开关管驱动的都需要隔离。我们知道隔离后一端的地一般要接到悬浮开关管的源端,一般这一点的电平是跳变得,以氮化镓晶体管为例,这点电压变化率可以达到140kV/us。而隔离芯片前一端的地是与控制地连接的,你随便看看隔离模块电源的手册,原副边耦合的寄生电容一般在60pF左右,也是就说在高速开关瞬间,会产生大约6A的电流从副边的地通过电容耦合到原边,原边的地电平肯定瞬间产生尖峰,整个控制系统产生强烈的干扰。所以做高频的时候,隔离电源的地线千万不要平行的铺在2层PCB中,干扰效果会更加强烈。同时选隔离芯片的时候也需要注意一个参数叫做CM transient immunity(肯定会给的),这个参数最好大于开关瞬间,桥臂中点电平的变化速率。光耦隔离这个参数一般在30kV/us,磁耦在35kV/us,电容耦合在50kV/us(是不是绝望了,都比氮化镓低,硅器件一般在10kV/us,Sic 30kV/us)。
还有很多细节可以引起干扰,不过真的不是EMI噪声做的孽。
关于高频磁芯设计,我是真的写不动了,哪天有空写一下。
我先简单的把以上内容总结一下:
1.不是开关频率越高,功率密度就越高,目前这个阶段来说真正阻碍功率密度提高的是散热系统和电磁设计(包括EMI滤波器和变压器)和功率集成技术。
2.慎重选择开关频率,开关频率会极大的影响整个变化器的功率密度,而且针对不同器件,拓扑,最佳的开关频率是变化的。
3.高频确实产生很多很难解决的干扰问题,往往要找到干扰回路,然后采取一些措施。
4.为了继续维持电力电子变换器功率密度的增长趋势,高频肯定是趋势。只是针对高频设计的很不成熟,相关配套芯片没有达到要求,一些高频的电磁设计理论不完善和精确,使用有限元软件分析将大大增加开发周期。
希望对题主有所启发。
【要有空格的回答(13票)】:
关于限制频率提升的瓶颈,先从以下几个随着频率提高损耗增加很明显的方面大概描述吧
1.MOSFET(包括开关损耗,驱动损耗,位移损耗(displacement loss,很多人可能是第一次听到这个名词))
1)开关损耗,future energy已经解释过了,在软开关技术下,这个是很小的,但也不可能没有,ZVS的关断只能是近似的,不过这并不是主导损耗。
2)驱动损耗,可以采用谐振驱动
驱动损耗,其中高频时栅极充放电损耗不小,但是如果利用软开关技术实现ZVS是不是就可以消除这里回答一下楼主,驱动损耗是不能消除,ZVS用在驱动上还是第一次听说,楼主可能概念上有点问题,通过ZVS使得开关管的DS两段电压和流过D级的电流没有交叠面积来实现无损的开通关断,是因为开关管会工作在放大区(事实上硬开关的损耗确实都发生在这个区里),但是栅极电容充放电的损耗跟这个完全是两码事,它本身就是个电容,不会消耗有功,没有ZVS这回事,损耗是发生在给它充放电时经过的寄生电阻上。
事实上用了谐振驱动后确实可以让驱动损耗变得很小,具体怎么实现,楼主还是查文献吧,不然要讲太多了。
3)位移损耗(感谢
的提醒,原来这个应该译作位移损耗)
这个应该会在10MHz的开关频率以上会体现出来(我好想暴露了什么),每次给输出电容Coss充放电的时候,电流都会通过和它串联的Ross(输出电容是寄生的,所以Ross在没有优化过的情况下一般都是不太好的可能有0.2欧母左右,还有更大的,你猜),在上面产生损耗,和驱动损耗产生的原因相似。大概有多少呢?看具体情况了,大概和开关管的导通损耗差不多,别较真,只是给大家一个直观的感觉。这个应该会在10MHz的开关频率以上会体现出来(我好想暴露了什么),每次给输出电容Coss充放电的时候,电流都会通过和它串联的Ross(输出电容是寄生的,所以Ross在没有优化过的情况下一般都是不太好的可能有0.2欧母左右,还有更大的,你猜),在上面产生损耗,和驱动损耗产生的原因相似。大概有多少呢?看具体情况了,大概和开关管的导通损耗差不多,别较真,只是给大家一个直观的感觉。
2.二极管(这个留着回头来补)
3.磁性元件的铁损和铜损
1)铁损是和开关频率的k次方成正比的
所以铁损是个很限制频率提升的玩意儿,外加上磁性元件一般能承受的温升也就50到60摄氏度,所以磁性元件是限制高频化的重要因素。
如果电感不大的话,可以用空心感来避免铁损,空心感现在最大在500nH左右,感值再大,体积就不大能接受了(高频话还不是为了减小体积重量)
变压器当然也可以用空心变压器,但是激磁感太小了,会造成很大的环流,MIT的教授david perreault去年做了一款75MHz的隔离型的变换器,用的就是空心变压器。频率1、2MHz,甚至10MHz都能找到可以用的磁芯材料,再往上就限制住了。
没深入研究可以请讲解
对于楼主说的
而变压器损耗也可以通过原副边更好的耦合,或者采用平面磁芯来减小损耗
在高频化的时候一般会反其道而行之,既然不能减小,那就把它利用起来,楼主可以多关注一下vicor的模块电源,做得很好。它的有些电源你拆开后会发现,不仅没有让原副边耦合得很好,反而故意把距离拉得很大来增加漏感!不然在高频下,如果还让漏感肆意妄为地震荡,那做出来的变换器的效率应该是很恐怖的吧。。。
【大灰灰的回答(6票)】:
三个原因:
针对题主已经意识到的损耗问题。
首先栅极充放电损耗无法通过软开关解决,请再回去看书或者看下面的解释。场效应器件的gate charging loss在高频下无解。试想某MOSFET以20MHz开关,理想ZV-on下(题主的flyback基本不用想了),total gate charge取典型值10nC,驱动电压10V,gate charging loss达到1W。这1W消耗在驱动芯片、电路上,着实不小。所以题主要这么做的话最好找到Qg更小(或基于field effect以外原理)的器件或者更先进的驱动方式。
其次题主你的flyback绝多数情况下并不是“ 与栅极充放电损耗相比现有开关管在满足电压电流应力的情况下其他损耗其实并不大”,就算做成quasi-resonant,跟频率相关的损耗机制主要还是开通或关断的overlapping。比如offline flyback,230V电网,QR工作,secondary side diode关断后,MOSFET的Vds就算在100V valley开通,自己算一下.5 * Cds * (100V)^2是多少,这个数字再乘上频率还是有点呵呵的。
第三磁性元件(变压器电感)的损耗相当复杂,绝不是改善耦合或者用神马奇葩形状的core就能解决的。这是原理性问题不是工程问题。铁氧体材料的Kramer-Kronig关系限制了频率、饱和磁感应强度,决定了此类软磁材料只能在特定频率以下应用的事实。然后线包(包括litz wire,铜带,PCB winding等各种结构)在高频下的各种问题,如skin effect,proximity effect,寄生电容,同样也是一大制约条件。
第四,在甚高频下,电感已经不是我们熟悉的那个电感,电容也不是我们熟知的电容了,所有寄生参数和寄生效应都会跳出来,搞得整个电源面目全非。比如你需要考虑PCB走线的skin effect,输出滤波电容的发热,乱七八糟的寄生振荡:会生不如死啊亲。
还有题主没提出来的问题呢,如EMI、比如产品化。我就不说下去了,只是最后提个不是问题的问题,做高频率的目的是什么?小型化?模块化的电源成熟情况下,大系统的安装尺寸一段时间内已经固定,那么小型化市场有多大?什么你说小型化生成本?好吧我只好呵呵。。。
【杨帅的回答(0票)】:
1、开关器件。
中小功率常用的开关器件MOSFET,其开和关都是需要一定的时间。这个问题在前面几楼上的大大已经写的很清楚了。100K作为常用的频率,一个周期时间是10us。40%的占空比,管子导通时间为4us。频率升高到500K的时,管子的导通时间只有800ns,一个周期为2us。开关器件的发展使得开关频率不能进一步提升。
2、磁性器件
绕组的趋肤效应和临近效应。在变压器的高频工作时,影响更加严重。会引起较大的绕组交流耗损,当然开关频率提高,绕组的匝数会降低。相应的绕组交流阻抗变大了,但是绕线长度减少了。问题貌似也不会很大,谐振半桥应用,我们经常会选200KHZ的频率。这样磁性元件的体积和耗损,是一个比较合适的范围。
上面说了绕组,磁芯上的耗损。是随磁通变化率和频率来计算的。近些年,TDK退出了PC95 97这类适合高频工作的磁芯,相应的优化了高频段的耗损。已经有产品在使用这类的磁性材料了。见下图:
【阿萨西诺的回答(2票)】:
死区时间……或者说开关管的开通关断时间……
【知乎用户的回答(0票)】:
仅就反激电路,个人认为主要以下原因:
损耗(就是热,次要原因):
1) 首先ZVS技术能够消除开通损耗,但实际还有一定的关断损耗
同时ZVS技术是有代价的,需要附加元件,附加的元件本身也存在损耗(还需要考虑成本)
2) 导通损耗,这个和开关频率基本无关,与功率有关
越高频的电路,越不可能做的功率很大。
这点可以说与电力电子器件极其相关,但仅就损耗而言也并非全如此。
电路杂散参数(主要原因):
1) 在高频场合,PCB上的杂散电感问题将会更加突出;
杂散电感的引入,会大大增加开关器件的电压应力(ZVS电路同样会有这个问题)
2) 高频情况下变压器的模型可能也发生变化,需要考虑寄生电容,
3) 杂散参数的引入,使得电路模型变得复杂,需要考量的东西会更多。
(磁方面其实不太了解)
1) 高频电路,磁损相对会大很多(不严格),也会带来热的问题。
2) 变压器参数并非恒定,不同工况下差别很大
(如果扩展到桥式电路,当然还有死区的限制)
单纯做高频电路其实也不难(MIT有位教授已经进入了MHz时代了),难点在于和其他性能指标的折中。
电力电子作为一门工程性的学科,其实用性更为重要。
【知乎用户的回答(0票)】:
元器件的发展。
【杨雷的回答(0票)】:
电力电子的发现就是被电力电子器件限制住!发现方向也就是提高电力电子器件的频率,igbt这种相对理想的器件,频率10k情况下,跑一会都能烧开水了,频率再高点。。难以想象!!碳化硅的的发展也许可以提高频率上限
【杨宇的回答(0票)】:
建议去世纪电源网提问,小众问题那边更专业。
【范国群的回答(0票)】:
喜欢该文的人也喜欢已解决问题
电子变压器和电力变压器是变压器的2种分类么?是同级别还是包含关系?
电子变压器和电力变压器是变压器的2种分类么?是同级别还是包含关系?我想知道他们各自的详细分类。我在网上找了一些都不全,而且没有说明。拜托拜托 前辈请指教!!!
浏览次数:1630
用手机阿里扫一扫
最满意答案
该答案已经被保护
  电子变压器的内容和应用范围
  电子变压器的内容和应用范围,随着电子技术的发展而发展。电子变压器最初的内容和应用范围,是指电子电路中的变压器。电子技术应用范围从通讯、家用电器发展到工业应用、计算机和网络技术、生物工程等等领域。电子技术本身从无线电通讯电子技术,发展到工业电子技术、电力电子技术和微电子技术。电力电子技术和电机技术等互相交叉,发展成应用广泛的电源技术,使电子变压器的内容和应用范围大大的向外扩展。电子变压器的内容和应用范围,根据现有资料,已经涵盖除电力变压器和电抗器以外的各种变压器和电感器。同时还延伸到相关的原材料(磁性材料与器件、电磁线、绝缘材料与结构材料)和配件、生产设备和检测仪表和装置。主要包括:
  (1)电源变压器:又称为功率变压器。有时根据使用的电子线路,又分别称为整流变压器、逆变变压器、开关电源变压器。
  (2)宽带变压器、射频变压器、视频变压器、音频变压器、中周变压器:主要用于通讯、网络、家用音响设备中。
  (3)稳压变压器(包括恒压变压器)、稳流变压器、参数变压器、可调变压器:主要用于交流电源设备中。
  (4)相数变换器(单相变三相、三相变单相)、相位变换器(移相器)、频率变换器(铁磁式倍频器和分频器):阻抗匹配变压器、主要用于特殊电源设备中。
  (5)脉冲变压器、触发变压器、驱动变压器:主要用于脉冲电源设备和电源控制电路中。
  (6)隔离变压器、屏蔽变压器:主要用于隔离绝缘和抗电磁干扰设备中。
  (7)平面变压器、印刷线路板变压器、片式变压器、薄膜变压器 :是根据外形尺寸大小来区别的,主要用于中高频开关电源中。
  (8)磁芯变压器、空芯变压器、压电陶瓷变压器:是根据工作原理来区别的。
  (9)滤波电感器、EMI滤波电感器、噪声抑制电感器、储能电感器、换向电感器、缓冲电感器、饱和电感器、可调电感器、镇流电感器:是根据所起的作用来区别的。
  (10)平面电感器、印刷线路板电感器、片式电感器、薄膜电感器:是根据外形尺寸大小来区别的。
  (11)磁芯电感器、空芯电感器:是根据工作原理来区别的。
  (12)电流互感器、电压互感器、脉冲互感器、直流互感器、零磁通互感器、弱电互感器、零序电流互感器、霍尔电流电压检测器:主要用于检测电路和设备中。
  电子变压器的原材料和配件、生产设备和检测仪表与装置包括:
  (1)磁性材料与器件:硅钢、软磁铁氧体、坡莫合金(高导磁铁镍合金)、非晶合金、钠米晶合金、复合磁性材料、磁性薄膜、磁带、磁丝、磁液体、磁粉芯、平面磁芯、正交磁芯、集成磁芯、多功能磁芯、复合磁芯等。
  (2)导电材料:裸铜线、裸铜带、编织线、电磁线(漆包线、纸包线、丝包线、多股漆包绞线)等。
  (3)绝缘材料:绝缘纸、绝缘布、绝缘绸、绝缘薄膜、绝缘板、绝缘漆、绝缘涂料、绝缘套管、绝缘组件等。
  (4)结构材料和配件:支持材料、封装材料、接线端子、紧固标准件等。
  (5)生产设备:铁心加工、铁心热处理、线圈绕制、线圈浸漆处理、器身干燥处理、结构件加工、装配等用的设备。
  (6)检测仪表和设备:电阻、相位、变压比、电感、空载损耗、负载损耗等检测仪表和装置、耐压(工频、感应、脉冲)试验、温升试验、噪声检测、抗EMI试验、局部放电试验、环境条件试验等用的专门设备和装置。
电子变压器的发展过程
  自从电子真空管诞生后,就出现电子电路,就开始有电子技术,也就随即诞生了电子变压器。电子变压器的发展,离不开电子技术的发展,尤其是电力电子技术和电源技术的发展。主要分为以下四个时期:
  1 初始创业时期
  20世纪50年代前,电子技术仍处于初始创业时期。主要电子器件是电子真空管,半导体整流器和晶体三极管很少使用。电子技术主要用于无线电技术和雷达技术。电源技术主要采用电机技术作为参数调节手段,只有个别的电源采用电子技术,例如采用电子真空管和饱和电感器的磁放大器式交流稳压电源。在初始创业时期,小型电子变压器,例如中周变压器、音频变压器、射频变压器等,主要作为无线电元器件来配套生产。大中型电子变压器,例如电源变压器、调压变压器、铁磁稳压器、饱和电感器(磁放大器)等,主要作为电机电器产品来生产。电子变压器没有形成单独的行业。电子变压器技术主要集中研究无线电用元器件、雷达用元器件、交流电源用元器件,特别是小型电源变压器、饱和电感器(磁放大器)取得相当规模的发展,出现了规范化的系列产品。
  2 基本形成时期
  20世纪60年代至70年代,晶体三极管和晶闸管(可控硅)在电子设备中的使用逐步增多,并形成了高潮。电子技术和其他技术交叉渗透和结合,形成了电力电子技术、电源技术和微电子技术。电子变压器中除了原有的品种而外,电源变压器中的整流变压器、逆变变压器,脉冲变压器中的触发变压器、驱动变压器,电感器中的滤波电感器、储能电感器、换向电感器、缓冲电感器,及各种检测用的电流互感器得到大力发展。电子变压器的品种基本齐全。出现了一批单独的电子变压器生产单位,电子变压器行业基本形成。电子变压器技术主要集中研究各种大中型电源变压器、脉冲变压器、电感器和互感器的设计和工艺。
  3 高频化时期
  20世纪70年代末到90年代初,电力电子技术和电源技术大量使用高频半导体元器件MOSFET、IGBT,大力推行&20kHz革命&,把工作频率提高到20kHz以上,用高频化改造电力电子设备和电源设备成为发展的主流。电子变压器出现一大批用于高频的新品种,如电源变压器中的高频开关电源变压器、电感器中的EMI滤波电感器、噪声抑制电感器、谐振电感器等。电子变压器行业形成相当规模,出现一大批生产家用电器用电子变压器、高频变压器和电感器的生产单位。电子变压器技术主要集中研究各种变压器和电感器在高频条件下工作中使用的原材料和工艺加工方法。
  4 小型化时期
  20世纪90年代中期开始,各种便携式电子通讯和信息处理设备,如个人计算机和移动电话(手机)使用越来越广泛,各种家用电器生产数量迅速增加,要求采用表面安装技术来装配。电子变压器和电感器,与其他电子元器件一样,逐渐走向小型化,出现各种各样的平面变压器和平面电感器,印刷线路板变压器和电感器,表面安装式变压器和电感器,薄膜变压器和电感器。由于有的电子变压器工作频率达到几十MHz,除了原有的磁芯变压器和电感器而外,空芯变压器和电感器也显示出一定的优点,在小功率的信号变换和控制电路中得到应用。采用压电陶瓷进行变换的压电陶瓷变压器,在高压小电流的地方,有其独特之处,已开发出相应的产品。电子变压器及其相应的原材料行业,已成为电子产品中一个重要的行业。电子变压器技术发展成为一门独立的应用技术。
电子变压器的发展动向
  纵观电子变压器的发展过程,可以看出:电子变压器的发展,既扎根于技术的发展,又受应用需求的推动。一方面追求电子变压器性能的提高,另一方面追求成本的降低。也就是和其他产品一样,追求适应市场需要的性能价格比。我们以此为出发点,从性能、材料、工艺等几个方面对电子变压器的发展动向进行评述。
  1 性能
  电子变压器的性能指标可以归纳为三高三低:高功能,高可靠,高效率,低噪声,低高度(小尺寸),低成本。这些性能指标并不是一成不变的,对不同应用领域的不同的电子变压器,而有不同的要求。
  1.1 高功能
  高功能是指对电子变压器要求的功能指标,在规定的使用条件下,完成得尽可能高一些。为此,要深入研究它在规定的使用条件下的工作情况,从而选取相应的原材料和加工工艺,以便使设计和生产出来的电子变压器达到尽可能高的功能指标。例如,原来标准规定的电源变压器的设计方法,不再适用于在高频下工作的开关电源变压器。这是因为在高频下工作的开关电源变压器的磁场分布和电流分布,与在低频和中频下工作不同,还应当考虑电感电容等分布参数。从20世纪90年代起,提出了各种不同形式的模型,以便对高频开关电源变压器的性能参数进行更准确的分析,对原有的设计方法进行改进。
  1.2 高可靠
  高可靠是指电子变压器在规定的工作条件下,正常工作到规定的使用寿命期。其中包含着两重含义。首先要能在规定的工作条件下正常工作,完成规定的功能。也就是对电子变压器要进行有关的工作环境条件试验,例如:高低温循环试验、防潮试验、防腐蚀试验、冲击和振动试验等。其次要能正常工作到规定的使用寿命期。也就是对电子变压器进行寿命试验。不论对那一种电子变压器,尤其是对特殊领域中使用的电子变压器,可靠性都是重要的性能指标。为此,从20世纪80年代起,研究开发出许多试验方法和提高可靠性的方法。
  1.3 高效率
  高效率是指电子变压器,尤其是大中型电源变压器在规定的工作条件下空载损耗和负载损耗小,也就是铜铁损耗小,发热少。提高效率的主要方法是采用新型的磁性材料和导电材料,降低铁损和铜损。其次,加工工艺(例如铁芯热处理工艺等)也有重要的作用。
  1.4 低噪声
  低噪声是指电子变压器在规定工作条件下产生的电磁干扰(EMI)要小,在音频范围内,还包括可闻噪声要小。电磁干扰有可能妨碍安装电子变压器的电子装置和设备正常工作,还会污染环境。近年来,对保护环境,防止电磁干扰特别重视,研究开发出许许多多抑制电磁干扰的方法和措施,例如各种吸收材料和屏蔽措施。同时,有几种电子变压器,如隔离变压器、屏蔽变压器、缓冲电感器、噪声吸收电感器、EMI滤波电感器,用于消除电子设备和装置的电磁干扰,对它们本身产生的电磁干扰尤其要注意。近年来对这些电子变压器的原理和结构,进行了大力开发研究。从2003年起,我国的家用电器和其他一些电子装置和设备都要达到规定的电磁兼容标准要求,对电子变压器的噪声指标要求将会越来越严格。同时,也为用于抗电磁干扰的电子变压器带来巨大的市场机遇。
  1.5 低高度
  低高度是从国外直译过来的一个词组,其意思是指电子变压器的高度和整体尺寸要低要小,也就是现在对电子元器件普遍要求的&轻薄短小&。为了达到便携式电子装置和设备对电子变压器重量轻、尺寸小的要求,为了达到便于大规模生产中采用表面安装技术对电子变压器的要求,从20世纪90年代中期起,电子变压器的高度逐渐变低。高度从厘米级的立体式,变成毫米级的平面式、印刷线路板式、片式,再变成小于毫米级的薄膜式。高度向低的方向变化,既带动了使用的原材料的发展,也带动了加工工艺的发展,从而更加满足规模生产的要求。
  1.6 低成本
  低成本是指电子变压器在规定的工作条件下满足适应市场需要的功能指标后尽可能追求最低的生产成本。电子变压器作为产品,也是商品,回避不了市场对商品成本低的追求,回避不了市场对产品适当的性能价格比的追求。这里,强调的是在保证&适当&的功能指标下追求低成本。在市场竞争中,成本低有时候甚至成为决定性的指标。新技术新工艺能否得到推广应用,都要通过成本这一关的考验。例如,小型电源变压器现在绝大多数采用EI形冲片磁芯,而不采用R形磁芯。其原因是EI形冲片磁芯能快速和规模生产。尤其是带骨架的线圈一次可同时绕多个(4~12个)线圈,不象R型变压器那样,要用专门的绕线机,一次只能绕一个,从而大大节约了加工工时,降低了成本。
  2 材料
  近年来,电子变压器的主要材料:磁性材料、导电材料、绝缘材料发展很快。不单是出现许多新材料,传统材料也取得了明显的进步。面对这些材料,电子变压器的制造者们仍然是追求适合市场需要的性能价格比,而不是单纯追求高新材料。当然,如果采用高新材料能提高产品的性能价格比,一定要优先采用,争取在市场上先走一步,占领先的优势。即使短时间不能出现良好的经济效益,也要使用那些从长远来看、从规模生产后来看将带来重要影响的高新材料。这一点,希望从事电子变压器研究开发生产的人们,要给以足够的注意。
  2.1 磁性材料与器件
  电子变压器所用的磁性材料和磁芯结构,《国际电子变压器》已刊登过专文介绍,这里只对其发展概况作简要的评述。
  软磁材料方面,不但是新兴材料:非晶合金、纳米晶合金、磁性薄膜迅速发展,而且传统材料:硅钢、软磁铁氧体、坡莫合金近年来都有明显的进步。各种材料都有自己的应用领域,从现在的情况来看,在中低频条件下,硅钢占领的市场份额最大。在中高频条件下,软磁铁氧体占领的市场份额最大。坡莫合金使用在工作条件要求严格,磁导率要求高的地方。非晶合金、纳米晶合金、磁性薄膜具有良好的发展前景,将逐步占领中高频、高频和低频条件下一定的市场份额。特别是高频条件下的市场,很有可能是纳米磁性材料(磁性薄膜、磁丝、磁性颗粒)将来称霸的天下。
  磁芯结构方面,发展最快的是复合材料磁芯。例如各种磁粉芯:铁粉芯、坡莫合金粉芯、非晶和纳米晶合金粉芯,已经在中高频条件下挤占了软磁铁氧体的一部份市场份额。多功能磁芯(集成磁芯),将是平面变压器的主要结构。薄膜磁芯,将是薄膜变压器的主要结构。尽管面对着片式空芯变压器、片式压电陶瓷变压器的挑战,许多专家仍然认为:由于薄膜变压器性能好、体积小、厚度(高度)低于毫米级,可以采用大规模生产工艺生产,可保证质量和一致性、效率高、成本低,在高频条件下将占领大部份市场份额。
  2.2 导电材料
  电子变压器用的导电材料近年来也有所发展,例如:
  (1)除了薄铜带、编织带、高强度漆包线与丝包线、高强度多股漆包绞线而外,还采用多层印刷线路板铜箔加工而成,便于规模生产,保证线圈参数的一致性。
  (2)提高导线中铜的含量,可以减少电阻率,降低铜损。现在国内生产的无氧铜电磁线的电阻率&可达到&0.02097。
  (3)采用双层和三层绝缘漆膜电磁线,可以不垫层间绝缘、可减少材料消耗、绕组尺寸和绕线工时。
  (4)采用自粘性电磁线,通过加热后,能使线圈自身粘接成一个整体,有利于绝缘和散热,并增加线圈强度。
  2.3 绝缘材料
  电子变压器用的绝缘材料发展很快。例如:
  (1)在干式电子变压器中,提高绝缘材料耐热等级,可以提高电子变压器的性能价格比。有人测算过,把绝缘耐热等级从A级或者E级,提高到F级和H级,可以使线圈和电子变压器缩小体积。虽然绝缘材料价格上升,但总成本降低20%左右。因此薄膜变压器中大量采用H级绝缘漆膜。
  (2)大量采用绝缘构件。由专门的工厂加工的绝缘构件,比自己小批量加工的质量好,成本低。
  (3)采用常温干燥的浸渍绝缘漆,可以简化绝缘处理工艺,减少工时。
  2.4 结构材料
  电子变压器的结构材料也正在发生变化,出现了许多新的动向,例如:
  (1)和家用电器相类似,以前的钢铁结构支持件,大部份都要更换成塑料压制或注塑件,不但可以保证必要的强度,还可以美化外观。
  (2)引出线和接线端子,也在向多种形式变化。除以前的螺钉压接式,焊接式而外,还增加了插接式和贴装式。
  (3)封装材料除了树脂以外,也采用浸渍绝缘漆和涂料进行封装。采用磁粉芯的功率电感器,大量采用浸渍漆封装。
  3 工艺
  电子变压器的加工工艺,常常是技术的关键所在。虽然是同一种产品,由于各生产单位加工工艺不同,性能和成本有比较大的差别。产品的性能参数和结构,可以根据样品进行仿制。但是加工工艺,不容易重复,而有一定的保密性。因此,各个生产单位都特别注意不断改进加工工艺,从而不断提高产品的性能降低成本。加工工艺发展的原则是:
  (1)提高产品的性能合格率;
  (2)保证产品的一致性;
  (3)缩短加工工时,提高生产效率;
  (4)尽量采用工模具,减少人工参与因素等。
  从以上的原则出发,就可以说明:为什么小型电源变压器采用EI形磁芯,而不采用R形磁芯?因为EI形磁芯冲片,可以用快速冲床加工,线圈绕线可以同时绕制多个。虽然损耗和体积不如R型小,但是比R型平均生产工时小,成本低,总的性能价格比超过R型。总之,考虑采用新的电子变压器加工工艺时,一定要注意落脚点是提高产品的性能价格比,否则这种新的加工工艺就是不可采用的。
  电子变压器从个别门类的配套生产,发展成多品种,独立的一个厂家众多声势浩大的行业,只不过几十年的时间,现在仍处在快速发展之中。回顾电子变压器的发展过程,和任何实用技术一样,一定要在产品的应用和参与竞争中,才能发展,才能提高。任何违背市场规则的行为,例如不适当的追求完美,追求过高的性能指标,迟早会使产品遭到市场无情的惩罚,甚至被淘汰。希望同行们牢牢记住这一点:只有追求适应市场需要的性能价格比,才是电子变压器发展的出发点。
  电力变压器是怎样分类的?
  答:(1)按用途可分为:电力变压器'&电力变压器和特种变压器。(2)按绕组形式可分为:双绕组变压器、三绕组变压器和自耦变压器。(3)按相数可分为:单相变压器、三相变压器和多相变压器。(4)按冷却方式可分为:油浸自冷、油浸风冷、油浸水冷和空气自冷等。(5)按绝缘介质可分为:油浸式变压器,干式变压器,充气式变压器等。(6)按调压方式分为:有载调压变压器、无励磁调压变压器。(7)按中性点绝缘水平分为:全绝缘变压器和半绝缘变压器。
答案创立者
以企业身份回答&
正在进行的活动
生意经不允许发广告,违者直接删除
复制问题或回答,一经发现,拉黑7天
快速解决你的电商难题
店铺优化排查提升2倍流量
擅长&nbsp 店铺优化
您可能有同感的问题
扫一扫用手机阿里看生意经
问题排行榜
当前问题的答案已经被保护,只有知县(三级)以上的用户可以编辑!写下您的建议,管理员会及时与您联络!
server is ok

我要回帖

更多关于 电力变压器为什么不用环形 的文章

 

随机推荐