高挥发性有机物底cod结果会高吗

豆丁微信公众号
君,已阅读到文档的结尾了呢~~
扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='http://www.docin.com/DocinViewer-4.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口COD反应问题COD反应受什么因素影响_百度知道
COD反应问题COD反应受什么因素影响
我有更好的答案
甲烷发酵阶段是厌氧消化反应的控制阶段,因此厌氧反应的各项影响因素也以对甲烷菌的影响因素为准。一、温度因素厌氧消化中的微生物对温度的变化非常敏感(日变化小于±2℃),温度的突然变化,对沼气产量有明显影响,温度突变超过一定范围时,则会停止产气。根据采用消化温度的高低,可以分为常温消化(10-30℃ )、中温消化(33-35℃左右)和高温消化(50-55℃左右)。二、生物固体停留时间(污泥龄)与负荷三、搅拌和混合搅拌可使消化物料分布均匀,增加微生物与物料的接触,并使消化产物及时分离,从而提高消化效率、增加产气量。同时,对消化池进行搅拌,可使池内温度均匀,加快消化速度,提高产气量。搅拌方法包括气体搅拌、机械搅拌、泵循环等。气体搅拌是将消化池产生的沼气,加压后从池底部冲入,利用产生的气流,达到搅拌的目的。机械搅拌适合于小的消化池,液搅拌和气搅拌适合于大、中型的沼气工程。四、营养与C/N比厌氧消化原料在厌氧消化过程中既是产生沼气的基质,又是厌氧消化微生物赖以生长、繁殖的营养物质。这些营养物质中最重要的是碳素和氨素两种营养物质,在厌氧菌生命活动过程中需要一定比例的氮素和碳素(COD∶N∶P=200∶5∶1)。原料C/N比过高,碳素多,氮素养料相对缺乏,细菌和其他微生物的生长繁殖受到限制,有机物的分解速度就慢、发酵过程就长。若C/N比过低,可供消耗的碳素少,氮素养料相对过剩,则容易造成系统中氨氮浓度过高,出现氨中毒。五、有毒物质挥发性脂肪酸(VFA是消化原料酸性消化的产物,同时也是甲烷菌的生长代谢的基质。一定的挥发性脂肪酸浓度是保证系统正常运行的必要条件,但过高的VFA会抑制甲烷菌的生长,从而破坏消化过程。有许多化学物质能抑制厌氧消化过程中微生物的生命活动,这类物质被称为抑制剂。抑制剂的种类也很多,包括部分气态物质、重金属离子、酸类、醇类、苯、氰化物及去垢剂等。六、酸碱度、pH值和消化液的缓冲作用pH值的变化直接影响着消化过程和消化产物。1、由于pH的变化引起微生物体表面的电荷变化,进而影响微生物对营养物的吸收;2、pH除了对微生物细胞有直接影响外,还可以促使有机化合物的离子化作用,从而对微生物产生间接影响,因为多数非离子状态化合物比离子状态化合物更容易渗入细胞;3、pH强烈地影响酶的活性,酶只有在最适宜的pH值时才能发挥最大活性,不适宜的pH值使酶的活性降低,进而影响微生物细胞内的生物化学过程。七、氧化还原电位(ORP或Eh)厌氧环境,主要以体系中的氧化还原电位来反映。高温厌氧消化系统适宜的氧化还原电位为-500~-600mV;中温厌氧消化系统及浮动温度厌氧消化系统要求的氧化还原电位应低于-300~-380mV。产酸细菌对氧化还原电位的要求不甚严格,甚至可在+100~-100mV的兼性条件下生长繁殖;甲烷细菌最适宜的氧化还原电位为-350mV或更低。八、氨氮厌氧消化过程中,氮的平衡是非常重要的因素。消化系统中的由于细胞的增殖很少,故只有很少的氮转化为细胞,大部分可生物降解的氮都转化为消化液中的氨氮,因此消化液中氨氮的浓度都高于进料中氨氮的浓度。实验研究表明,氨氮对厌氧消化过程有较强的毒性或抑制性,氨氮以NH4+及NH3等形式存在于消化液中,NH3对产甲烷菌的活性有比NH4+更强的抑制能力。
为您推荐:
其他类似问题
换一换
回答问题,赢新手礼包
个人、企业类
违法有害信息,请在下方选择后提交
色情、暴力
我们会通过消息、邮箱等方式尽快将举报结果通知您。&&&&&&& 梅州市大埔县环境保护监测站& 广东梅州& 514000
&&&&&&& 摘要:COD是水质监测中的一项重要指标,而高氯废水中COD的测定一直是环境监测领域中的一个难题,对其测定方法展开研究具有十分重要的意义。本文对高氯废水的各种COD测定方法进行了分析,对其适用性展开了研究,以期能为广大环境监测工作者提供参考。
&&&&&&& 关键词:高氯废水;COD;测定方法
&&&&&&& 0 引言
&&&&&&& 随着我国工业化进程的不断推进,工业生产得到了迅猛的发展,高氯废水的排放也日益增加。在高氯废水中,COD的测定是重要的有机物污染参数之一,COD越高,则表示水质污染越严重,若不进行处理,将会对水环境生态系统以及人体的健康构成威胁。因此,对其进行测定十分必要。而氯离子作为COD测定的重要干扰物之一,如何消除氯离子的影响,准确测定COD是当前的一个重要课题。
&&&&&&& 1 行业标准方法
&&&&&&& 目前,针对高含氯低COD水样的测定,有如下方法可以参考。
&&&&&&& 1.1 氯气校正法
&&&&&&& HJ/T70-2001《高氯废水化学需氧量的测定氯气校正法》指出针对Cl-浓度高于1000mg/L,同时COD低于250mg/L的水样,采用GB11914-89测得的结果为表观的COD值,准确度是不可靠的。
&&&&&&& 用氯气校正法测定含氯空白值,测定结果在10mg/L左右,产生正误差。故采用含氯空白校正法,消除了系统误差,实验结果表明相对误差在0.1%~1.1%之间,加标回收率为102%~105%,进一步提高了该方法的准确度。
&&&&&&& 氯气校正法虽适用于高氯废水中COD的测定,但在实践中发现该法对测定结果仍可产生正误差。还需要高纯的氮气来导出产生的氯气,而且还存在装置复杂、操作比较繁琐、测定效率低、数据失控几率大、耗时费电、分析成本相对较高等不足。
&&&&&&& 1.2 碘化钾碱性高锰酸钾法
&&&&&&& 研究结果表明,对Cl->20000mg/L、COD<100mg/L的水样推荐使用碘化钾碱性高锰酸钾法。碘化钾碱性高锰酸钾法不但解决了重铬酸钾法不能准确测定高氯废水COD的问题,又解决了高锰酸钾法对有机物氧化率过低的问题,适用于测定企业高氯低COD废水的COD值,方法最低检出限0.20mg/L,测定上限为62.5mg/L,检测范围较窄。该方法测定含有氧化剂物质时,需要用硫代硫酸钠滴定测出以消除其影响。另外,若水样中含有几种还原性物质,则取它们的加权平均K值,作为水样的K值。
&&&&&&& 1.3 氯气吸收校正法
&&&&&&& 氯气吸收校正法就是在COD测定过程中,消解后采用吸收剂将重铬酸钾氧化Cl-而产生的氯气进行完全吸收,并准确测定体系内Cl-氧化产物Cl2的量的基础上,转化为氯气的需氧量,从表观的COD值中减去此值即为水样真实的COD值。该方法采用和标准法同样的消解方式,只是消解时选用一个特制带吹嘴的锥形瓶,加热结束后用充气泵吹出体系内滞留的Cl2,并在多孔玻板吸收管中加以吸收,然后用碘量法测定吸收管中的Cl2。前述的行业标准HJ/T70-2001《高氯废水化学需氧量的测定氯气校正法》就是采用氢氧化钠为吸收剂的校正法。考虑到碘在不同温度下的挥发性能差别很大,可以先用NaOH来吸收产生的Cl2,再与KI反应来消除室温的影响。为了简化吸收校正法的操作流程,亦可直接将玻璃管的末端插入KI溶液中进行吸收,即为碘吸收校正法。
&&&&&&& 2 降低氯离子浓度的方法
&&&&&&& 通过掩蔽、消除、气化等方法以降低水样中的Cl-浓度,消除氯离子的干扰,达到常规重铬酸钾法可以测定的范围,来准确测定COD。例如掩蔽剂法、银盐沉淀法、银柱固定法、氯离子转化为氯化氢法等。
&&&&&&& 2.1 掩蔽剂法
&&&&&&& 根据添加的掩蔽剂种类不同可分为以下几种方法。
&&&&&&& 硫酸汞掩蔽法是国标GB11914-89中测定COD时采用的消除Cl-干扰的方法,通常硫酸汞掩蔽剂的加入量按HgSO4和Cl-质量比为10:1为宜。为了扩大GB11914-89的应用范围,对于高氯废水,可以通过加大硫酸汞的添加量来达到准确测定COD的目的。控制硫酸汞与氯离子质量比为15:1,采用K2Cr2O7浓度为0.18mol/L,可有效减少Cl-的干扰。对于氯离子含量高于2000mg/L、而COD值较低的废水样品,也按硫酸汞与氯离子质量比为15:1投加硫酸汞作掩蔽剂,同时扣除空白氯离子残留的COD值,得到准确可靠的实验结果。但在实际实验中发现,采用质量比HgSO4:Cl-&15时,会有沉淀生成,容易对结果产生干扰,提出应提高二者的比值,当采用质量比12.5:1时,可较好的消除Cl-的干扰,尤其是针对浓度比值Cl-/COD&20的水样,具有较好的准确度和精密度。Vyrides等将质量比HgSO4:Cl-的比例调整为20:1,并采用3g/L的K2Cr2O7氧化剂浓度,适合检测高盐量(NaCl浓度<40g/L)、低有机物(COD浓度为20~230mg/L)水体中COD的测定。仅靠增加HgSO4用量不能完全消除Cl-的干扰,应综合水样中Cl-及COD的浓度来确定最佳的HgSO4与Cl-的比例。研究结果表明HgSO4:Cl-的比例成线性增加关系,并据此给出了不同COD浓度范围的高氯废水中HgSO4:Cl-推荐比例。该方法适合检测Cl-浓度<10000mg/L、COD浓度在50~200mg/L的高氯废水中COD。硫酸汞掩蔽法虽然提高了检测精度,但增大了汞盐对环境的污染。
&&&&&&& 三价铬盐掩蔽法是通过加大重铬酸钾的投加量,可利用Cr3+与Cl-的络合作用来消除干扰。该方法适用于Cl-浓度超过3500mg/L的水样,即使对Cl-浓度为10000mg/L的水样,通过增加Cr3+和硝酸银的添加量,也可显著降低干扰。
&&&&&&& 银盐掩蔽法同样是以重铬酸钾为氧化剂,但通过增大硫酸银的浓度来消除高氯离子的干扰,硫酸银同时作为催化剂和掩蔽剂使用、密封消解。实验结果表明,相对标准偏差为1.4%(n=8),平均加标回收率为98.5%。该法具有掩蔽效果好、操作简单、精密度高的特点,同时可以避免汞盐对环境的污染,适合测定多种类型的水样。
&&&&&&& 采用Bi(NO3)3作为掩蔽剂来消除Cl-干扰,可以减少汞的环境污染。不管采用哪种掩蔽剂,掩蔽剂的添加量及掩蔽效果均需要实验优化确定。
&&&&&&& 2.2 银盐沉淀法
&&&&&&& 银盐沉淀法通常有两种操作方式:一种是对水样进行预处理,即在消解前向水样中加入适量硝酸银,使水样中的Cl-完全沉淀,过滤氯化银沉淀后得到无氯离子的上清液,然后采用国标GB11914-89的方法进行COD的测定。此种方法在反应、沉淀及过滤过程中,如果对水样中的有机物产生共沉淀或絮凝等去除作用,测试结果将有可能偏低。采用银盐沉淀法快速测定了火电厂高氯脱硫废水的COD,火电厂高氯脱硫废水中氯离子约1mg/L,而其COD一般仅为100~150mg/L。实验结果表明该法具有较好的准确性和重复性,适合于火电行业脱硫废水的COD快速测试。
&&&&&&& 另一种是在消解过程中,通过增大硝酸银的添加量来沉淀Cl-。以硝酸银和硫酸铬钾代替硫酸汞来消除COD测定中的Cl-干扰,同时将重铬酸钾溶液的浓度降低为0.100mol/L来抑制Cl-的氧化,从而提高测定的准确度,并用硫磷混酸代替硫酸以缩短回流时间。实验结果表明该方法对于测定Cl-含量低于25000mg/L的水样,具有较好的准确度和精密度。
&&&&&&& 银盐沉淀法使用贵重的银盐来沉淀Cl-,提高了测量成本。如果实验后对银进行回收再利用,可在一定程度上提高该方法的经济效益。
&&&&&&& 2.3 载银树脂固定法
&&&&&&& 载银树脂固定法是采用制备的载银离子交换树脂来过滤水样,树脂上的Ag+可以截留水样中的Cl-,从而将Cl-固定在树脂中,过滤后的水样可以采用常规国标法测定。
&&&&&&& 2.4 转化为氯化氢脱除法
&&&&&&& 对于高含氯水样,消解前添加硫酸,置换产生氯化氢气体,再用惰性气体吹脱水样中的氯化氢气体,从而降低水样中Cl-的浓度。但是该法操作性较差,同时,如果水样中存在挥发性有机物质,吹脱过程中可能将挥发性有机物质一同脱除,从而使测定结果偏低。
&&&&&&& 另外,可以采用吸收剂法除去释放出来的氯化氢气体。如释放出来的HCl气体,可以被悬放在反应管中的铋吸收剂吸收而预先除去,以此来降低Cl-的存在对测定结果的干扰。该法一般采用烘箱或微波消解,与标准法对照,一般情况下其准确度和精密度均无显著性差异。
&&&&&&& 3 标准曲线校正法
&&&&&&& 标准曲线校正法就是在不加掩蔽剂以及完全氧化的情况下,测定水样的表观COD值,减去Cl-浓度对应的COD值,即为水样的实测COD值。首先配制不同C1-浓度的水样,分别测出对应的COD值,然后绘制COD&C1-标准曲线,也成为标准氯耗氧曲线。取两份相同的待测水样,其中1份通过硝酸银滴定法测出其中Cl-的浓度,查COD&Cl-标准曲线求出Cl-浓度对应的CODCl值;另1份在不加掩蔽剂的情况下,测其Cl-与有机物共同产生的表观COD值。那么,水样的实测COD值=表观COD-CODCl。
&&&&&&& 标准曲线校正法无需加入剧毒的硫酸汞,是对硫酸汞掩蔽法的改进。但在不同的情况下,如操作者、酸度、重铬酸钾浓度、回流时间等的不同,Cl-的氧化程度可能不一样。因此,不同情况下的标准曲线会有所不同,每次测定之前均需事先绘制,显得比较烦琐。利用曲线校正法,COD的实测值与实际值具有良好的一致性,可以较好的用于高氯低COD废水的测定。运如艳基于标准曲线校正法,将水样分为可滤和不可滤两部分,分别用国标法和标准曲线校正法进行COD的测定,其和就是出水水样COD的最终结果,称为叠加法,结果准确可靠。
&&&&&&& 4 低浓度氧化剂法
&&&&&&& 一般而言,氧化剂的浓度越大,其氧化能力越强。低浓度氧化剂法的依据就是不同浓度的K2Cr2O7对Cl-的氧化能力不一样,K2Cr2O7浓度降低到一定值后,对Cl-的氧化能力很弱,但不影响对水样中有机物的氧化效果,这样就可以降低或者排除Cl-对COD测定的干扰。
&&&&&&& 研究结果表明,采用低浓度氧化剂与稀释络合掩蔽等结合的方法是完全可行的。选择浓度为0.05mol/L的K2Cr2O7溶液为氧化剂,可以降低Cl-的氧化率,同时结合HgSO4掩蔽剂,可以有效地排除Cl-对CODCr测定的干扰。这种方法对于Cl-的浓度<5000mg/L、COD<400mg/L的水样,结果的一致性和可靠性均很好。对于其他高Cl-浓度的水样,可以结合稀释的方法进行检测,只要将Cl-的浓度降低到5000mg/L以下即可。
&&&&&&& 为了满足不同范围COD的测定要求,可采用分段重铬酸钾氧化法,对不同范围COD的测定用不同浓度的氧化剂。研究发现氧化剂浓度对Cl-干扰COD测定的程度有较大的影响,实验验证结果表明:当COD<200mg/L、200mg/L<COD<600mg/L及600mg/L<COD<1200mg/L时,适宜的氧化剂浓度分别为0.05mol/L、0.10mol/L和0.20mol/L。用分段重铬酸钾法测定高含盐废水COD是完全可行的,而且方法的准确度较好,相对误差<9%,实际废水加有机物的回收率>92%。
&&&&&&& 研究结果表明,在低浓度氧化剂的条件下,COD的测定结果并不取决于Cl-浓度的高低,而是回流后剩余氧化剂量的多少。只要当氧化剂剩余量不超过46%,则无论Cl-的质量浓度怎样变化,对测定结果都不会有太大的干扰。因此。合理把握取样量,可获得理想的测定结果。
&&&&&&& 低浓度氧化剂法操作简单,对高含Cl-低COD浓度水样的测定准确度高,有效扩大了标准法的测定范围。但该种方法需要预先估计未知水样的COD,同时氧化剂浓度不宜过低,否则会影响真实COD值。
&&&&&&& 5 密封消解法
&&&&&&& 采用密封消解法测定COD时发现,Cl-对COD干扰和其质量浓度并无多大的关系,在相同Cl-的质量浓度条件下,Cl-的干扰远小于国标的重铬酸钾法,而且能够达到较高的准确度和精密度。测定结果表明,对于COD在100~1000mg/L、Cl-浓度&10000mg/L时,相对误差&4.2%。但密封消解法的消解方式与国标法不同,用于各种实际水样分析时,污染物的消解程度难以划定,同时选择该方法时一定要确保实验操作的安全。建立无汞高银低压密封消解法,采用6%的Ag2SO4作为催化剂,用25mL比色管作为消解容器,在恒温箱内密闭消解45min。对于COD值小于50mg/L的水样,采用0.025mol/L的重铬酸钾标准溶液氧化,密封消解后,采用0.002mol/L的硫酸亚铁铵标准溶液回滴。本法适合Cl-浓度不大于10000mg/L、COD不大于800mg/L水样的测定,可最大限度地消除COD测定中氯离子的干扰。当水样中Cl-浓度大于10000mg/L或COD大于800mg/L时,可稀释后测定。该法具有操作简单、测定快速、结果准确、精密度高、测定装置通用易得、可减少环境二次污染的优点。基于HJ/T399-2007《水质化学需氧量的测定快速消解分光光度法》的原理,建立了高含氯低浓度COD样品的检测方法。该方法适合检测Cl-浓度在1mg/L、COD浓度在100mg/L以下的样品,测定结果的相对标准偏差为1.8%~3.5%(n=5),相对误差为0.9%~2.9%。该方法具有前处理程序简单、分析时间短、不需要另配试剂的特点,并且扩大了HJ/T399-2007的适用范围。
&&&&&&& 6 催化剂优化法
&&&&&&& 通过考察MnSO4、NiSO4、CuSO4、MgSO4、Fe2(SO4)3等催化剂在COD检测中的样品回收率及测定值,认为MnSO4的催化效果最接近Ag2SO4。其催化机理是由于当MnSO4加入到K2Cr2O7的强酸性溶液中,过渡金属离子Mn2+首先被氧化成为中间态Mn3+,Mn3+再用空d轨道接受占据在有机物分子中最高能级轨道上的电子,形成电荷转移络合物,产生有机脂肪酸锰游离基,进一步使有机物加速氧化成CO2和H2O。采用MnSO4作为催化剂测定高含氯气田水中COD,对COD含量为350~648mg/L、氯离子含量为mg/L的样品进行测定,相对标准偏差在3.0%~6.0%之间,取得了较好的实际应用效果。采用完全氧化法,以NiSO4代替Ag2SO4作为催化剂的实验结果表明,测定COD分别为50.0mg/L、200mg/L的标准溶液(含氯离子从1000mg/L到10000mg/L),其相对标准偏差为1.8%~3.9%。实验结果的重复性、准确度等均符合实验室质量控制指标的要求。
&&&&&&& 改变催化剂Ag2SO4的添加程序,也可得到较好的分析结果。根据无Ag2SO4催化剂存在时,氧化反应仅停留在生成乙酸这一步,且氧化率极低,而氧化氯离子的反应则不需要Ag2SO4作催化剂的机理,改变了消解反应的程序,准确地测定了水样的COD值。实验中先不加Ag2SO4,只加重铬酸钾和浓硫酸,使氯离子被氧化为氯气跑掉(消耗的氧从校准曲线中查得)。加热0.5小时后取出冷却5min再后加入0.3gAg2SO4,继续加热回流1.5h,使绝大部分有机物被氧化。从测得的总的表观COD值中减去Cl-的表观COD值,即为水样的COD值,结果重复性好、无污染、成本低,是值得推广的清洁分析方法。
&&&&&&& 7 其他方法
&&&&&&& 上述介绍的方法也可以交叉结合使用,以达到较好的消除Cl-干扰的效果。采用哈希(HACH)快速消解分光光度法,结合硫酸汞络合掩蔽预处理方法,对高氯废水COD的快速测定进行了探讨试验。实验结果表明,可以较好的消除氯离子的干扰,与氯气校正法结果比对,相对误差为7.28%~9.8%。
&&&&&&& 随着科学的发展,也出现了很多新型的COD的分析检测方法,比如流动注射法、化学发光法、反相流动注射分析法、电化学氧化法、光化学氧化法、光电协同化学氧化法以及微波消解法等均可以用来测定水体中的化学需氧量。这些新方法具有灵敏度高、线性范围宽,单样分析时间短、操作简单等特点,拓宽和发展了环境监测技术,均可以用于高含氯低COD水样的测定研究。但每种方法对水样中Cl-的耐受范围等需要具体的实验确定。
&&&&&&& 8 结语
&&&&&&& 综上所述,COD是测定水质有机物污染程度的重要指标之一,而高氯废水的测定则是其中的重难点。在高氯废水COD测定中,每种方法的适用范围不同,测定精度也不同。因此,在高氯废水COD测定中,监测工作者要结合高氯废水的实际情况,选择合理的方法进行测定,从而消除氯离子的干扰,提高测定的精度。
&&&&&&& 参考文献:
&&&&&&& [1]高氯低COD废水COD测定方法研究[J].黄荣富,周觅,俞建军,胡迪飞,张明慧,夏纯洁.精细化工中间体.2014(01)
&&&&&&& [2]高氯废水的COD测定方法探讨[J].监勇.资源节约与环保.2014(11)
您可能感兴趣的其他文章
&&站长推荐
&&期刊推荐
&&原创来稿文章
转寄给朋友
朋友的昵称:
朋友的邮件地址:
您的邮件地址:
写信给编辑
您的邮件地址:中文部分_百度文库
您的浏览器Javascript被禁用,需开启后体验完整功能,
享专业文档下载特权
&赠共享文档下载特权
&10W篇文档免费专享
&每天抽奖多种福利
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
&&外分翻译
阅读已结束,下载本文需要
想免费下载更多文档?
定制HR最喜欢的简历
下载文档到电脑,同时保存到云知识,更方便管理
加入VIP
还剩7页未读,
定制HR最喜欢的简历
你可能喜欢硫酸汞加入量的多少对水样COD的测定是否有影响
硫酸汞加入量的多少对水样COD的测定是否有影响用重铬酸钾法测定污水中COD的含量.我在做空白实验时出现过这样的现象.加入0.2g硫酸汞和加入0.4g硫酸汞最后滴定时所消耗的硫酸亚铁铵的用量截然不同,有着2-3毫升的差距,而且前者(0.2g硫酸汞)的消耗量往往比后者(0.4g硫酸汞)低.两次测定时都用的是同一下口瓶中的无离子水,刚开始我怀疑有可能是氯离子的干扰所致,可无离子水中的氯离子含量是很低很低的,应该不会有影响.硫酸汞的加入量是根据所测污水中的氯根含量以硫酸汞:氯离子=10:1的方式确定的.而且都是按国标要求最先加入的,按理论来说:硫酸汞的加入量的多少应该不会对空白(无离子水)试验有影响,可在几次的实验中都出现了这样的现象,当加入相同量的硫酸汞时空白实验所消耗的硫酸亚铁铵的用量基本相接近.这到底会是什么原因?是不是硫酸汞加入量的多少真得对实验有影响,如果真得有影响的话,那在理论上又该怎么去解释呢?还请各位名师做功指导!我们水质的硬度,经常测都为0,再说硬度是指钙镁离子的含量,它应该不会影响COD的测定,COD指的是有机物对水质的污染情况.
按理说,加入过量的硫酸汞不回对COD产生影响,你试过不加硫酸汞的结果与0.2g硫酸汞的结果相比较吗?建议你再试试.另外,你们学校或公司的去离子水的水源是什么?自来水?去离子的工艺是什么?只能从空白的水样去找原因.
我有更好的回答:
剩余:2000字
与《硫酸汞加入量的多少对水样COD的测定是否有影响》相关的作业问题
1、高浓度过氧化氢溶液对温度比较敏感,温度升高或者阳光直射都能使其迅速分解,可以采用在强碱性的溶液中加热来消除过氧化氢的干扰.(弊端:若溶液中含有挥发性有机物,加热时会挥发掉,导致COD下降;当过氧化氢浓度越来越低时,分解速度会越来越慢,最终还是有一定量的过氧化氢残留在溶液中)2、在纯水中加入不同量的过氧化氢,测定其C
楼上正解!自己要相信自己!如果不放心的话,加些硝酸银沉淀一下再测!
你可能没弄明白,硝化反应是氨转化为硝酸盐的过程,这个过程保证BOD和氮的比值为5:1即可,题中氨氮是10,需要BOD50,我不知道你的COD中可生化的有多少,用50减去你的水中BOD值,再除以1.8即可得到投加甲醇的量.反硝化是硝酸盐脱氮的过程,你的题中未提到反硝化总氮的去除率. 再问: 谢谢楼上的大侠帮忙哈 现在越说
硫酸汞是用来络合Cl-离子的,进而排除Cl-的干扰,潮湿后(自然吸潮)可以比日常加入量略微多加些,不会影响COD的测量.若是脏水使硫酸汞变潮就不能使用了,应立即更换.
滴定空白和水样时分别消耗硫代硫酸钠标液25ml和15ml水样中硫化物的浓度是20度的.
那是因为你的瓶子里有很多有机物粘在玻璃内壁上,在水样里加完重铬酸钾后再加入硫酸的话就会出现你说的那种情况!在酸性介质里未反应完全的有机物被碳化的缘故,你换一个干净的瓶子再试试,如果还不行那么你的水样有机物含量就太高了,需要稀释!
测COD时 用重铬酸钾法需要加硫酸汞 用高锰酸钾法不用加硫酸汞用重铬酸钾法时 氯离子也会被氧化 如果不加硫酸汞 会使结果偏高
当然可以,只要滴定总量不超过锥形瓶总量就行了,只是硫酸亚铁铵浓度高会使结果准确度降低,硫酸亚铁铵浓度低时,会使滴定用时大,时间慢.
曝气池是什么运行方式?推流还是混合?如果是推流的话,你看你取的是哪一段的水样,有可能那一段的水样中溶解氧含量就是零或者0.5mg/L以下,这样用碘量法就很难测出来.还有就是,你取样后是否及时加固定剂(MnSO4,碱性KI)如果你不赶快测的话,如果没加,溶解氧有可能已经被水样中的活性污泥给消耗掉了.等你再去测得时候,已经
你看一下《水和废水监测分析方法》第四版,里面有详细介绍测量方法和注意事项.希望对您有所帮助,需要电子版的,请联系我.
COD是化学需氧量,放置几天,如果不加以防范措施,就会使得空气中的氧气氧化水样中的物质,就会使得COD的测定结果变小.我在监测中心时候,一般监测COD的水样,要当天送回中心测定,并加入适当抗氧化物质,放置时间不能超过24小时.
实际水样的上层和下层的氧化还原环境是有差异的.上层可以接触空气,容易获得更多溶解氧,使得上层水的还原性成分有较大可能被氧化,COD值较小.而下层水的溶解氧含量较少,还原性成分大多未被O2氧化,COD值较大.混合均匀的目的就是使测试结果能够代表水样上下层的平均COD值.
正常自然界中氯离子会被还原成氯气的形式,从负一价被氧化为零价.但是在测COD的过程中,因为重铬酸钾具有强氧化性,会把氯离子氧化为次氯酸根,从负一价被氧化为正一价,导致了被还原的铬离子增多,进而导致检测的COD浓度偏高.
1.1试剂除另有说明,实验室所有试剂均为符合国家标准的分析纯试剂,试验用水均为蒸馏水或同等纯度的水.1.1.1 硫酸银(Ag2SO4),化学纯;1.1.2 硫酸汞(Hg2SO4),化学纯;1.1.3 硫酸(H2SO4), =1.84 g/mL;1.1.4 硫酸银-硫酸试剂:向1 L硫酸(1.1.3)中加入10 g硫酸银
以下是我们公司用的方法.不懂再问吧.检测方法:水质 化学需氧量的测定 重铬酸钾法(GB 主题内容与适用范围1.1 主题内容:本标准规定了水中化学需氧量的测定方法.1.2 适用范围:用0.25mol/L浓度的重铬酸钾溶液可测定大于50mg/L的COD值,未经稀释水样的测定上限为700mg/L,用0.0
首先你要确认水样中只有异丙醇,甚至不能有异丙醇降解的中间产物,否则你测的COD就包含了中间产物的量,那肯定就不准了,其次,你需要配标准浓度的异丙醇溶液做COD试样以确定你做的COD是否准确,毕竟COD的测试误差不小,如果你的试验要求高,此方法也不可行.
有影响.在COD检测中,氯根离子对结果影响较大.所以应当添加硫酸汞消除氯离子的影响.所谓化学需氧量(COD),是在一定的条件下,采用一定的强氧化剂处理水样时,所消耗的氧化剂量.它是表示水中还原性物质多少的一个指标.水中的还原性物质有各种有机物、亚硝酸盐、硫化物、亚铁盐等.但主要的是有机物.因此,化学需氧量(COD)又往
国标方法是 加入 1g左右的 硫酸汞,可以和水中的氯离子生成 不参加反应的沉淀,从而避免氯离子对测定结果的影响.仅供参考.
二、重铬酸钾法测定COD原理 在强酸性溶液中,准确加入过量的重铬酸钾标准溶液,加热回流,将水样中还原性物质(主要是有机物)氧化,过量的重铬酸钾以试亚铁灵作指示剂,用硫酸亚铁铵标准溶液回滴,根据所消耗的重铬酸钾标准溶液量计算化学需氧量.Cr2O72-+14H ++6e 2Cr3++7H2O (水样的氧化)Cr2O72-+

我要回帖

更多关于 污水cod偏高怎么处理 的文章

 

随机推荐