的最新系列显卡做深度学习显卡要求的体验如何

问个问题新显卡支持深度学习吗?_显卡吧_百度贴吧
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&签到排名:今日本吧第个签到,本吧因你更精彩,明天继续来努力!
本吧签到人数:0成为超级会员,使用一键签到本月漏签0次!成为超级会员,赠送8张补签卡连续签到:天&&累计签到:天超级会员单次开通12个月以上,赠送连续签到卡3张
关注:3,390,180贴子:
问个问题新显卡支持深度学习吗?收藏
跑tensorflow啥的,不是矿工,只是毕业论文要做这个,自己笔记本怕是跑不动
1080ti ttxp ttv 都可以
你打个电话问问老黄不就行了吗
a和n都行 现在都支持 cpu都可以
不可能不支持,但是等新卡出了你再做毕业论文怕是要延毕了
别等了 titan v
登录百度帐号NV禁止GeForce用于深度学习  12月26日消息:我们知道英伟达在人工智能深度学习方面有着很强的硬件实力,并为深度学习领域提供了Tesla显卡,但考虑到Tesla的价格,现在不少厂商都是在用GeForce进行深度学习运算。现在英伟达给出了明确的说法:不允许。  据报道,英伟达的终端用户使用协议中已经禁止在数据中心使用GeForce,这意味着GeForce显卡将无法继续用在数据中心上。  显然这么做就是为了不让GeForce显卡抢占了Tesla的市场,要知道Tesla显卡的价格是GeForce的数倍,因此没有那么追求性能和效率的厂商普遍会选择用GeForce显卡来代替Tesla。  这对英伟达显然是不利的,因此新的协议将这条路彻底封死了,想要继续进行深度学习研究的商业机构只能使用Tesla显卡。穿警服直播被拘留&  近年来直播平台越来越火,网络上直播的什么都有,现在竟然有人为了出名竟然穿警服直播,最后被行政拘留15日。  据了解,这名女主播在快手平台上直播,并发布了大量的穿警服的视频,声称自己是某派出所的民警。对此很多网友表示质疑,为什么民警上班时间可以直播?这名女子立刻回复“想看看不看滚。  针对此事件,&黑龙江省绥化市公安局官方21日发布警方通报,表示”接到网友举报后立即依法展开核查。经查,视频中身着警服者为胡某某,并非警务人员,无业。”  考虑到该女主播的视频在网络上流传范围较广,对警察的形象造成了不良影响。所以根据《中华人民共和国人民警察法》第36条规定,绥棱县公安局依法对其做出行政拘留15日处罚。本文属于原创文章,如若转载,请注明来源:http://diy.zol.com.cn/672/6725812.html
提示:支持键盘“← →”键翻页
配置类型 CPU系列
投诉欺诈商家:
天津重庆哈尔滨沈阳长春石家庄呼和浩特西安太原兰州乌鲁木齐成都昆明贵阳长沙武汉郑州济南青岛烟台合肥南京杭州东莞南宁南昌福州厦门深圳温州佛山宁波泉州惠州银川
摄影手机硬件笔电平板
下载ZOL APP秒看最新热品深度学习文本分类在支付宝投诉文本模型上的应用
来源:云栖社区
 作者: 兔子酱 编辑:
作者:兔子酱 来源:云栖社区原文链接:&小蚂蚁说&随着深度学习的快速发展,以及在图像、语音领域取得的不错成果,基于深度学习的自然语言处理技术也日益受到人们的关注。计算机是怎么理解人类的语言的呢?传统机器学习的应用,常常是利用上述人工总结的文本特征,但往往会遇到一些问题。比如“猫”和“咪”这两词语的语义很接近(即近义词),但计算机并不能真正的在词语语义层面理解,只是把他们当作了两个不同的词语。再比如“小狗”和“小猫”是很相关的两个词语,也不能被很好的理解和刻画。本文主要介绍了深度学习中的文本分类任务,以及一些应用于文本分类的深度学习模型。文本分类是自然语言处理领域最经典的场景之一,试图推断出给定的文本(句子、文档等)的标签或标签集合。通过这些技术,计算机能够更好地理解人类的语言。针对支付宝投诉欺诈场景,蚂蚁金服人工智能团队设计了多个文本深度学习模型。包括双向GRU,Capsule Network和Attention-based Model等等,均在支付宝投诉欺诈场景上取得了不错的效果。大家一起来看看吧!背景介绍对于风控业务,用户的投诉是理解黑产运作方式和监控风控变化的重要形式。风险决策中心每天会得到大量用户投诉文本信息,每个投诉文本通常对应一定的风险形式。目前分类模型只解决了部分对于文本信息利用率的问题。目前支付宝投诉欺诈场景主要应用到的深度学习模型有TextCNN和双向GRU。相关工作分析本文的主要目的是想介绍一下深度学习中的文本分类任务,以及一些应用于文本分类的深度学习模型。&文本分类是自然语言处理领域最经典的场景之一,试图推断出给定的文本(句子、文档等)的标签或标签集合。文本分类中包含了大量的技术实现,从是否使用了深度学习技术作为标准来衡量,可以将这些技术实现分为两大类:基于传统机器学习的文本分类和基于深度学习的文本分类。文本分类的应用非常广泛,其中比较有常见的应用有垃圾邮件分类,情感分析,新闻主题分类,自动问答系统中的问句分类以及一些现有的数据竞赛等。现有的数据竞赛包括知乎的看山杯机器学习挑战赛,BDCI2017的比赛“让AI当法官”和Kaggle的比赛“Toxic Comment Classification Challenge”等。文本分类中主要有三种分类类型,包括二分类问题,多分类问题以及多标签问题。&比如垃圾邮件分类中判断邮件是否为垃圾邮件,属于一个二分类问题。在情感分析中,判断文本情感是积极还是消极,或者判断文本情感属于非常消极,消极,中立,积极,非常积极中的一类,既可以是二分类问题也可以是多分类问题。在BDCI 2017的比赛“让AI当法官”中,基于案件事实描述文本的罚金等级分类和法条分类,分别属于多分类问题和多标签分类问题。文本分类的评价指标会根据不同的分类类型有各自不同的评价指标。二分类问题中常常用到Accuracy,Precision,Recall和F1-score等指标;多分类问题往往会使用到Micro-Averaged-F1,Macro-Averaged-F1等指标;多标签分类问题中则还会考虑到Jaccard相似系数等。在基于传统机器学习的文本分类中,一般采用TF-IDF和Word Counts提取不同word n-gram的文本特征,然后将提取到的文本特征输入到Logistics回归、Naive Bayes等分类器中进行训练。但是当统计样本数量比较大的时候,就会出现数据稀疏和维度爆炸等问题。这时候就需要做一些特征降维处理,比如停用词过滤,低频n-gram过滤,LDA降维等。随着深度学习的快速发展,以及在图像、语音领域取得的不错成果,基于深度学习的自然语言处理技术也日益受到人们的关注。传统机器学习的应用,是利用上述人工总结的文本特征,但往往会遇到一些问题。比如“猫”和“咪”这两词语的语义很接近(即近义词),但计算机并不能真正的在词语语义层面理解,只是把他们当作了两个不同的词语。再比如“小狗”和“小猫”是很相关的两个词语,也不能被很好的理解和刻画。为了解决上述问题,让计算机一定程度上能够理解词语的语义,词向量技术应用而生。Mikolov et al. 2013 [1] 提出了word2vec模型,可以通过词语上下文的结构信息,将单词的语义映射到一个固定的向量空间中。如果需要判定两个词语的语义相似度(或相关度),只需要计算两个词向量的夹角余弦或欧式距离等即可。比如,“小狗”与“小猫”的相似度值就会很高。凭借词向量算法,计算机有了一定的词语语义上的理解能力。在此基础上,我们希望可以更好的刻画整个句子的语义信息。Yoon Kim, 2014 [2] 提出将CNN模型首次应用到文本分类问题上。这里,词向量作为网络的第一层的输入,而CNN的核心点在于可以捕捉局部相关性,在文本分类任务中可以利用CNN来提取句子中类似word n-gram的关键信息。TextCNN模型架构如下图所示,句子中每个word使用K维向量来表示,于是句子可表示为一个N*K的矩阵,作为CNN的输入。使用不同的Filter Window进行卷积操作得到Feature Map,之后对Feature Map使用Max-over-time Pooling的池化操作,即将Feature Map向量中最大的值提取出来,组成一个一维向量。经过全连接层输出,使用Softmax层进行分类,并且加上Dropout层防止过拟合。自然语言处理中更常用的是递归神经网络(RNN, Recurrent NeuralNetwork),能够更好的表达上下文信息。Liu et al., 2016 [3] 介绍了RNN用于分类问题的设计。用于文本分类的RNN网络结构如下图所示,网络中将最后一个单元的结果作为文本特征,连接全连接Softmax层进行分类。除此之外,还有使用双向RNN网络 [4](Bidirectional RNNs,BiRNNs)的两个方向的输出向量的连接或均值作为文本特征。一般的循环神经网络往往存在许多弊端。在训练网络过程中,经过许多阶段传播后会出现梯度消散(Gradient vanishing)或梯度爆炸(Gradient exploding)等问题。循环神经网络在反向传播中得到误差的时候,可以想象一下多次乘以自身的参数权重,该乘积消散或爆炸取决于的幅值。针对于梯度爆炸的情况,常常会使用截断梯度方法。但是梯度截断并不能有效地处理梯度消散问题,有一个容易想到的方法是使用正则化或约束参数,当然还有更好的解决方案,那就是使用LSTM(Long Short-Term Memory)或GRU(Gated recurrent unit)等门控RNN(Gated RNN)。梯度消散是原生RNN中一个很大的问题,也就是后面时间的节点对于前面时间的节点感知力下降,也就是忘事儿。Hochreiter et al., 1997[5] 提出了LSTM,它的设计初衷就是来解决梯度消散问题。在标准的RNN中,这个重复的模块只有一个非常简单的结构,例如一个tanh层。LSTM同样是这样的结构,但是重复的模块拥有一个不同的结构。不同于单一神经网络层,这里是有四个,以一种非常特殊的方式进行交互。如下图所示,一个LSTM块有四个输入。(1)输入(Input):模块的输入;(2)输入门(Input Gate):控制输入;(3)遗忘门(Forget Gate):控制是否更新记忆单元(Memory Cell);(4)输出门(Output Gate):控制输出。在多个LSTM连接的循环网络中,单个的LSTM的各个门的控制方式如下:Cho et al., 2014 [6] 提出了GRU网络结构,GRU作为LSTM的一种变体,将遗忘门和输入门合成了一个单一的更新门。同样还混合了细胞状态和隐藏状态,加诸其他一些改动。最终的模型比标准的LSTM模型要简单,是目前非常流行的变体。具体在文本分类任务中,BiRNNs(实际使用的是双向GRUs)从某种意义上可以理解为可以捕获变长且双向的“word n-gram”信息。问题与挑战word2vec算法虽然可以学到有用的词向量,但是该算法只刻画了词语的上下文结构信息,并不能很好的利用中文词语内部的结构信息,而中文又是一种强表义的语言文字。尤其是在大安全领域的数据里,有很多词语的变种写法。比如“小姐”和“小女且”这两个词语,经常会有不法分子为了绕开拦截系统,故意采用“形变”写成后者;再比如“微信”和“威芯”这两个词语,则是“音变”的刻意回避。因此,我们希望尝试一种新的算法,可以很好的刻画出中文词语的“形”和“音”的特性,生成更高质量的词向量,进而为后面的深度神经网络提供更大的信息量。TextCNN能够在很多任务里面能有不错的表现,CNN卷积特征检测器提取来自局部的序列窗口的模式,并使用max-pooling来选择最明显的特征。然后,CNN分层地提取不同层次的特征模式。然而,CNN在对空间信息进行建模时,需要对特征检测器进行复制,降低了模型的效率。但在实际中文的语料库中,文本结构丰富,单词的位置信息、语义信息、语法结构等,对于CNN这种空间不敏感的方法不可避免会出现问题。BiGRUs在文本分类上有明显的效果,但是在可解释性以及关注文本整体重要性上有明显的不足,特别是在分析badcase的时候感受尤其深刻。如何解决TextCNN在文本中深入理解文字的位置信息、语义信息、语法结构等信息,以及使BiGRUs文本模型能够关注文本整体重要性将是下面要探索的内容。CW2VECCao et al. 2018 [7] 在AAAI 2018的论文里提出了cw2vec算法。(相关阅读请参考《AAAI 2018 论文 | 蚂蚁金服公开最新基于笔画的中文词向量算法》)该算法通过构造“n元笔画”提取出汉字的表义单元,比如“森林”与“木材”这两个词语具有很多共同的“4元笔画”-“木”,因此这两个词语具有较高的相关度。相对于汉字、偏旁粒度的词语拆解,n元笔画是一种非人工总结、由算法自动统计出来的表义结构。在中文的公开测试集中,cw2vec相对于word2vec, GloVe, CWE等算法均取得了一致性的提升。cw2vec算法同时利用了中文词语内部和上下文的结构信息,来设计损失函数,因此产生更高质量的中文词向量。除了“形”之外,“音”的刻画可以通过“n元拼音”来实现。这里拼音字符从“a”到“z”,按照同样的方法获得词语的拼音,然后通过滑窗进一步得到“n元拼音”。为了同时获得“形”和“音”的特征信息,我们采用了一种简单有效的实验方案,即分别基于“n元笔画”和“n元拼音”模式学习词向量,然后再对词向量进行拼接。相对于词向量平均(可以看作是线性加权),这种拼接方法,对后续的深度神经网络保有了更高的非线性信息融合能力。目前cw2vec算法在内容安全宝、保险等场景中取得了不错的效果,这里我们也将探索其在支付宝投诉欺诈场景的作用。Capsule NetworkHinton et al., 2017 [8] 在去年发表的论文中,Hinton介绍Capsule是一组神经元,其输入输出向量表示特定实体类型的实例化参数(即特定物体、概念实体等出现的概率与某些属性)。我们使用输入输出向量的长度表征实体存在的概率,向量的方向表示实例化参数(即实体的某些图形属性)。同一层级的Capsule通过变换矩阵对更高级别的Capsule的实例化参数进行预测。当多个预测一致时(本论文使用动态路由使预测一致),更高级别的Capsule将变得活跃。到目前为止,将胶囊网络应用到自然语言处理上的论文研究较少,其中Zhao et al., 2018 [9] 提出了将胶囊网络应用到文本分类任务上。对于传统的分类问题上,胶囊网络取得了较好的性能,并且其性能超过了TextCNN,其模型结构图如下所示。我们当前使用的网络结构是隐藏大小为128的BiGRUs(双向GRUs),连接胶囊网络层,胶囊数量设置为10,路由数量设置为3。Attention机制在谈及基于Attention机制的模型时,不能不先提及一下Encoder-Decoder框架,Encoder-Decoder框架可以理解成由一个句子生成另一个句子的通用处理模型。其架构如下图所示:如图中的例子可以看到通过Encoder编码了“机器学习”四个繁体字,得到一个中间语义,即图中标了红框框的绿色方块。然后将这个红框框的绿色方块作为Decoder的输入。这里得做一下解释,Encoder-Decoder是一个通用的计算框架,其中的Encoder和Decoder可以是不同的模型组合,比如CNN、RNN等,上图展示的就是Encoder和Decoder都是RNN的组合。仔细看上图的翻译框架可以看到,在生成目标单词的时候,无论哪个单词都是用到同一个红框框的绿色方块,即同一个中间语义。这就是展现出一种注意力不集中的分心模型。那注意力模型是如何的呢?Bahdanau et al., 2014 [10] 提出了将Attention机制应用到在机器翻译。注意力模型会在输出目标单词的时候关注到输入单词的,比如输出“machine”的时候,注意力模型应该将目光注意到“机器”两个词上,即“机器”的关注重要性应该大一些,而“学习”两个词的重要性应该小一些。基于Attention机制的模型架构如下图所示。Yang et al., 2016 [11] 提出了用词向量来表示句子向量,再由句子向量表示文档向量,并且在词层次和句子层次分别引入Attention的层次化Attention模型(Hierarchical Attention Networks,HAN)。HAN的模型结构如下图所示。我们当前使用的网络结构是隐藏大小为128的BiGRUs(双向GRUs),连接word-level的Attention层。实验结果实验中读取了支付宝投诉欺诈场景的一段数据作为训练集,另一段时间的数据作为测试集。数据的标签是三分类,有违禁类,非案件类和欺诈类。其中欺诈的分类结果是我们主要关注的结果。数据集经过一些去重数据,去除文本中的标点,填充空值等预处理操作后,将处理后的数据输入我们的神经网络模型中,得到如下结果。实验中我们主要对比Capsule Network和TextCNN模型以及BiGRU模型和Attention模型在不同词向量作为初始网络Embedding层在不同评价指标下的效果对比。其中为了验证两种词向量拼接后的高维词向量对网络结构的效果,添加了一组词向量拼接后对不同网络结构的实验对比。上图是使用word2vec作为词向量,多个网络模型在支付宝投诉文本上的一组实验示例。第一张图是该组模型的ROC曲线,第二张图是该组模型的Precision/Recall曲线。上图是使用cw2vec作为词向量,多个网络模型在支付宝投诉文本上的一组实验示例。第一张图是该组模型的ROC曲线,第二张图是该组模型的Precision/Recall曲线。上图是使用拼接后的高维向量作为词向量,多个网络模型在支付宝投诉文本上的一组实验示例。第一张图是该组模型的ROC曲线,第二张图是该组模型的Precision/Recall曲线。备注:其中2vecs是指将300维cw2vec词向量和300维word2vec词向量拼接在一起,形成一个600维词向量。AUC的计算方式是根据三分类共同的预测结果和真实标签计算得出的。三分类准确度(Accuracy)的计算方式是根据三分类结果的最大值来确定类别的,而Precision/Recall是仅根据三分类中的欺诈类的结果计算出来的。实验中词向量算法分别用到了word2vec和cw2vec,其中word2vec中包含了cbow和skip-gram各150维的词向量,cw2vec中包含了基于笔画和拼音各150维的词向量。其中拼接后的高维词向量(2vecs)是同时包含cw2vec和word2vec的600维词向量。上述实验表明,不管在使用word2vec,cw2vec以及拼接后的高维词向量作为词向量,我们用Capsule Network网络结构训练的模型在Precision/Recall值和AUC值上都比原先TextCNN的效果好。比较两者的三分类准确度,仅在使用拼接后的词向量的准确度上Capsule Network略低于TextCNN。因此,实验证明Capsule Network的整体表现优于原先的TextCNN。在比较BiGRU模型和Attention模型时,我们可以发现在较低Precision下的Recall值时,BiGRU模型的分值略高于Attention模型。但在较高Precision下的Recall时,Attention模型的分值则明显高于BiGRU模型。如表中Attention+word2vec在80%Precision下Recall值略低于BiGRU+word2vec。但在85% 和90%Precision下,Attention+word2vec的Recall值则明显高于BiGRU+word2vec。在比较两者的AUC值和Accuracy值,在使用word2vec词向量和拼接的高维词向量时,Attention模型的分数较高。在词向量间的对比中,可以看到仅使用cw2vec作为词向量网络模型整体上比word2vec和拼接的词向量效果更好。讨论与展望Capsule网络结构在文本分类中能够深入理解文字的位置信息、语义信息、语法结构等信息,而Attention机制能够让RNN网络更加关注于整理文本的重要性。希望Capsule网络结构和Attention机制可以在更多的场景发挥效果,非常欢迎随时联系我们交流讨论!感谢各位技术同学的热心帮助,以及蚂蚁金服机器学习平台-PAI平台的技术支持,实验中的cw2vec和word2vec两种词向量的生成是在PAI平台上实现的,为实验对比提供了很大的帮助,在数据中PAI的统计组件来进行建模的前的EDA。使用Pai-Tensorflow的GPU资源及分布式Tensorflow的支持,极快地加速了整个实验流程。也希望大家能够享受机器学习的乐趣!参考文献[1] Mikolov et al. Distributedrepresentations of words and phrases and their compositionality[C]. NIPS. 2013.[2] Kim Y. Convolutional neuralnetworks for sentence classification[J]. arXiv preprint arXiv:, 2014.[3] Liu P, Qiu X, Huang X.Recurrent neural network for text classification with multi-task learning[J].arXiv preprint arXiv:, 2016.[4] Schuster M, Paliwal K K.Bidirectional recurrent neural networks[J]. IEEE Transactions on SignalProcessing, ): .[5] Hochreiter S, Schmidhuber J.Long short-term memory[J]. Neural computation, ): .[6] Cho K, Van Merri?nboer B,Gulcehre C, et al. Learning phrase representations using RNN encoder-decoderfor statistical machine translation[J]. arXiv preprint arXiv:, 2014.[7] Cao et al. cw2vec: LearningChinese Word Embeddings with Stroke n-gram Information. AAAI 2018.[8] Sabour S, Frosst N, Hinton G E.Dynamic routing between capsules[C]//Advances in Neural Information ProcessingSystems. -3866.[9] Zhao W, Ye J, Yang M, et al.Investigating Capsule Networks with Dynamic Routing for Text Classification[J].arXiv preprint arXiv:, 2018.[10] Bahdanau D, Cho K, Bengio Y.Neural machine translation by jointly learning to align and translate[J]. arXivpreprint arXiv:, 2014.[11] Yang Z, Yang D, Dyer C, et al.Hierarchical attention networks for document classification[C]//Proceedings ofthe 2016 Conference of the North American Chapter of the Association forComputational Linguistics: Human Language Technologies. -1489.
IT168企业级
扫一扫关注
行车视线文章推荐NVIDIA通过TITAN X等产品推动深度学习
 作者: 冯伟 编辑:
  【IT168&资讯】为了解决当今世界最尖端的技术挑战之一,我们刚刚推出了全新的硬件和软件,将前所未有地提高深度学习研究的速度、易用性和功用。在人工智能领域快速成长的深度学习技术是一项创新的计算引擎,可应用在从先进医药研究到全自动驾驶汽车的多元领域。  NVIDIA联合创始人、总裁兼首席执行官黄仁勋先生在 GPU 技术大会的开幕主题演讲活动上,对在座的四千名与会嘉宾展示三项将推动深度学习的新技术:  l NVIDIA GeForce GTX TITAN X – 为训练深度神经网络而开发的最强大的处理器。  l DIGITS 深度学习 GPU 训练系统 – 数据科学家与研究人员能利用这套软件便捷地开发出高品质深度神经网络。  l DIGITS DevBox – 全球最快的桌边型深度学习工具 – 专为相关任务而打造,采用 TITAN X GPU,搭配直观易用的 DIGITS 训练系统。  GeForce GTX TITAN X 的另一面  一物两用:Titan X 不仅可玩转精致的虚拟世界,也可胜任繁重的科研工作  TITAN X 是我们全新推出的旗舰级游戏显卡,但也特别适合用于深度学习。  我们两周前在旧金山举办的游戏开发者大会上让各位先睹为快 TITAN X 的身影,它以电影《霍比特人》里的史矛戈巨龙为蓝本,播放了一段名为《暗影神偷》精彩的虚拟现实体验。  在 TITAN X 上能以 4K 的超高画质呈现最新 AAA 游戏大作的瑰丽画面,可以在开启 FXAA 高设定值的情况下,以每秒40帧(40fps)运行《中土世界:暗影魔多》(Middle-earth: Shadow of Mordor)游戏,而在九月发行的 GeForce GTX 980 上则是以 30fps 来运行。  采用 NVIDIA Maxwell GPU 架构的 TITAN X,结合 3,072 个处理核心、单精度峰值性能为 7 teraflops,加上板载的 12GB 显存,在性能和性能功耗比方面皆是前代产品的两倍。  凭借强大的处理能力和 336.5GB/s 的带宽,让它能处理用于训练深度神经网络的数百万的数据。例如, TITAN X 在工业标准模型 AlexNet 上,花了不到三天的时间、使用 120万个 ImageNet 图像数据集去训练模型,而使用16核心的 CPU 得花上四十多天。  现已上市的GeForce GTX TITAN X 售价为 7999元人民币。  DIGITS:通往最佳深度神经网络的便捷之路  使用深度神经网络来训练电脑教自己如何分类和识别物体,是一件繁重又费时的事情。  DIGITS 深度学习 GPU 训练系统软件自始至终都将为用户提供所需数据,帮助用户建立最优的深度神经网络,改变上述的局面。  访问 http://developer.nvidia.com/digits 即可下载DIGITS 深度学习 GPU 训练系统,这是首套用于设计、训练和验证图像分类深度神经网络的多合一图形系统。  DIGITS 可在安装、配置和训练深度神经网络过程中为用户提供指导 – 处理复杂的工作好让科学家能专心在研究活动和结果上。  得益于其直观的用户界面和强大的工作流程管理能力,不论是在本地系统还是在网络上使用 DIGITS,准备和加载训练数据集都相当简单。  这是同类系统中首个提供实时监控和可视化功能的系统,用户可以对工作进行微调。它还支持 GPU 加速版本 Caffe,目前,这一框架在众多数据科学家和研究人员中都得到了广泛使用,用于构建神经网络(参见 Parallel Forall 博客上的《DIGITs: Deep Learning Training System》一文,有更详尽的说明)。  DIGITS 可在安装、配置和训练深度神经网络过程中为用户提供指导,处理繁重的任务,使科学家能够集中关注研究和成果。  DIGITS DevBox:全球最快的桌边型深度学习机器  NVIDIA 深度学习工程团队为了自己的研发工作而开发的 DIGITS DevBox,是一套集多项功能于一身的平台,能够加快深度学习的研究活动。  它采用四个 TITAN X GPU、从内存到 I/O,DevBox 的每个组件都进行了最佳化调试,可为最严苛的深度学习研究工作提供高效率的性能表现。  为深度学习而生:DIGIT DevBox 的每个组件都针对深度学习研究活动进行了最佳化调试  它已经预先安装了数据科学家和研究人员在开发自己的深度神经网络时,所需要使用到的各种软件,包括 DIGITS 软件包、最受欢迎的深度学习架构 – Caffe、 Theano 和 Torch,还有 NVIDIA 完整的 GPU 加速深度学习库 cuDNN 2.0。  所有这些都集结在这个高能效、静默、运行流畅且外形优美的软件包中,只需要普通的电源插座,低调安置在您的桌下即可。  较早期的多 GPU 训练成果显示,在关键深度学习测试中,DIGITS DevBox 可以提供 4 倍于单个 TITAN X 的性能。使用 DIGITS DevBox 来训练 AlexNet 只要13个小时就能完成,而使用最好的单 GPU PC 的话则是两天,单纯使用 CPU 系统的话则要一个月以上的时间。
行车视线文章推荐

我要回帖

更多关于 能跑深度学习的显卡 的文章

 

随机推荐