在物理电学动漫中,W,P,T,A,V,R分别是什么单位

全国各地重点高中:
全国各地杯赛:
  电学在中考中所占的比例相当大(35%~45%),如果没有充分把握那么要在中考中取得高分是比较困难的为此我们把知识点归纳如下:一条主线,二个规律,三串公式。
  一条主线概括为&3721&,具体数字表示如下:
  &3&指3个基本电学实验仪器&&电流表(安培表)、电压表(伏特表)、滑动变阻器。&7&指7个电学物理量(初中)&&电量、电流、电压、电阻、电功、电功率、电热。&2&指2个基本电路连接方式&&串联电路、并联电路。&1&指1种最为典型的电学实验方法&&伏安法(测电阻、电功率等)。
  二个规律指:欧姆定律、焦耳定律(内容、公式、适用范围)。
  三串公式指:基本公式(定义式)、导出式、比例式。
  现在就各要点进行详细说明:
  (一)对3个电学仪器要求掌握如下:电流表、电压表(作用、电路符号、量程、最小刻度值、使用规则),滑动变阻器(使用方法、电路中的作用)。电流表可用&二要二不&加以记忆,电压表可用&二要一不&加以记忆,滑动变阻器可用&串联接在电路中,接线一上加一下。AC、AD接线柱,P左R小反则大。BC、BD接线柱,P左R大反则小。AB接线阻值定,CD接线阻值无。&加以记忆(其中各符号如课本P88 图7&11所表示)。
  (二)对7个物理量要求掌握定义(意义)、物理量符号、单位(国际、常用)、公式(导出式)、串并联电路中的特点。
  1、电量:(1)定义:物体含有电荷的多少叫电量,用符号&Q&表示。(2)单位:库仑(库),用符号&C&表示。(3)检验:验电器(结构、原理、使用)。
  2、电流: (1)定义:1秒钟内通过导体横截面的电量叫电流强度(电流)。用符号&I&表示。(2)公式:I=Q/t (定义式)式中I表示电流强度(电流),Q表示通过导体横截面的电量,t表示通电时间。
  (3)单位:国际单位&&安培(安)(A) 常用单位还有&&毫安(mA)、微安(&A)。(4)测量:电流表。(5)电路特点:  串联电路中,电流处处相等,即: I1=I2=I3=&=In 并联电路中,干路中的电流等于各支路中的电流之和,即 I总=I1+I2+&+In
  3、电压:(1)电压的作用:电压是使自由电荷定向移动形成电流的原因。用符号&U&表示。
  (2)电源的作用:电源的使导体的两端产生电压,是提供电压的装置,它把其它形式的能转化成了电能,而在对外供电时,却又把电能转化为其它形式的能。(3)单位:国际单位&&伏特(伏)(V)常用单位还有&&千伏(kV)、毫伏(mV)、微伏(&V)。(4)几种电压值:一节干电池的电压U=1.5伏 、对人体的安全电压不高于36伏(U&36伏)(5)测量:电压表。(6)电路特点:串联电路两端的总电压等于各部分电路两端的电压之和。即U=U1+U2+&+Un并联电路里,各支路两端的电压均相等。即U=U1=U2=&=Un
  4、电阻: (1)定义:导体对电流的阻碍作用叫电阻。用符号&R&表示。(2)单位:国际单位&&欧姆(欧)(&O)常用单位还有&&千欧(k&O)、兆欧(M&O)。(3)决定电阻大小的因素:导体的电阻是本身的一种性质,它的大小决定于导体的长度、横截面积和材料,导体的电阻还跟温度有关。(4)测量:伏安法(电压表和电流表)。(5)等效电阻: a.串联电路的总电阻等于各串联导体电阻之和。即R总=R1+R2+&+Rn 若各电阻均为r,则R=nrb.并联电路总电阻的倒数等于各并联电阻的倒数之和。即1/R=1/R1+1/R2+&+1/Rn若各并联导体的电阻均为r,则1/R=n/R即得:R=r/n
  5、电功:(1)定义:电流通过某段电路所做的功叫电功,用符号&W&表示。examda
  (2)实质:电流做功的过程实质是电能转化为其它形式的能的过程。电流做了多少功,就有多少电能转化为其它形式的能,就消耗了多少电能。(3)单位:国际单位&&焦耳(焦)(J)其它单位&&千瓦时(kwh),生活中也用&度&来表示。(4)公式:定义式&&W=UIt=Pt 导出式&&W=I2Rt W=(U2/R)t W=UQ (Q在这指电量)(5)测量:用电能表(电度表)测量。应掌握它的读数方法(最后一位是小数)。
  电能表上铭牌上通常有以下内容: &220V&&&表示电能表的额定电压是220伏&5A&&&表示这只电能表允许通过的最大电流是5安.&kwh&&&表示电功的单位,即&度& &3000R/kwh&&&表示每消耗1度电,电能表的转盘就转过3000转。(6)电功特点:a.电功特点:串联电路和并联电路中,电流所做的总功等于各部分用电器电流所做功之和。即W总=W1+W2b.串联电路中电功分配关系:串联电路中,电流通过各电阻所做的功与其电阻成正比,即W1:W2=R1:R2c.并联电路中电功分配关系:并联电路中,电流通过各电阻所做的功与其电阻成反比,即W1:W2=R2:R1
  6、电功率:(1)定义:电流在单位时间内所做的功叫电功率。用符号&P&表示。意义:它是表示电流做功快慢的物理量。(2)单位:国际单位&&瓦特(瓦)(W) 常用的单位还有&&千瓦(kW)
  (3)公式:定义式&&P=W/t 决定式&P=UI (因为W=UIt=Pt) 导出式&&P=U2/R=I2R (因为P=UI、I=U/R、U=IR)(4)测量:伏安法(电压表和电流表)另也可以用电能表和秒表测量。(5)额定功率和实际功率:用电器铭牌上标的通常为额定电压和额定功率。如某灯上标有&PZ220&60&、&220V 60W&等,要懂得从当中求出R(因为P=U2/R所以R=U2/P),也可以从中求出该灯正常工作时的电流I(因为P=UI所以I=P/U)。灯的亮暗决定于它的实际功率。(6)电功率特点: a.电功率特点:串联电路和并联电路消耗的总功率都等于各用电器所消耗的功率之和。即P总=P1+P2b.串联电路中电功率与电阻的关系:串联电路中各用电器(电阻)所消耗的功率与它的电阻成正比。即P1/P2=R1/R2 c.并联电路中电功率与电阻的关系:并联电路中各用电器(电阻)所消耗的功率与它的电阻成反比。即P1/P2=R2/R1
  7、电热:(1)定义:电流通过导体时所产生的热量叫电热。即电流的热效应。用符号&Q&表示。
  (2)单位:国际单位&&焦耳(焦)(J)(3)公式:定义式&&Q=I2Rt (焦耳定律) 导出式&&Q=W=UIt Q=(U2/R)t 这两个导出式成立的前提是,电路为纯电阻电路,也就是这时电流通过导体时,电能全部转化为内能,而没有同时转化为其他形式的能量,也就是电流所做的功全部用来产生热量。
  (4)电热器的发热体&&电阻率大、熔点高。 保险丝&&电阻率较大、熔点较低的铅锑合金丝。
  (5)电热特点:
  a.电热特点:不论是串联电路还是并联电路,电路中所产生的总热量都等于各用电器产生的热量的总和。即Q总=Q1+Q2b.串联电路中电热与电阻的关系:串联电路中各用电器(电阻)产生的电热与其电阻成正比。即Q1/Q2=R1/R2c.并联电路中电热与电阻的关系:并联电路中各用电器(电阻)产生的电热与其电阻成反比。即Q1/Q2=R2/R1
  (三)对2个基本电路联接方式要求掌握典型电路图的画法、实物电路图的连接、电流特点、电压特点、等效电阻、电功特点、电功率特点、电热特点。
  (四)对1个重要电学实验&&伏安法,应掌握在测电阻和测电功率的具体实验中的常规处理方法,包括它的实验仪器、实验原理,电路图、操作方法等。
欢迎使用手机、平板等移动设备访问中考网,2017中考一路陪伴同行!
中考网版权所有Copyright© . All Rights Reserved.初中物理电学知识点以及模型理解_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
初中物理电学知识点以及模型理解
&&帮你学电学,超级简单
阅读已结束,下载文档到电脑
想免费下载本文?
定制HR最喜欢的简历
下载文档到电脑,方便使用
还剩3页未读,继续阅读
定制HR最喜欢的简历
你可能喜欢下列电学物理量的单位中.属于基本单位的是( )A.CB.VC.AD.Ω——精英家教网——
暑假天气热?在家里学北京名师课程,
& 题目详情
下列电学物理量的单位中,属于基本单位的是(  )A.CB.VC.AD.Ω
科目:高中物理
下列电学物理量的单位中,属于基本单位的是(  )A.CB.VC.AD.Ω
科目:高中物理
来源:不详
题型:单选题
下列电学物理量的单位中,属于基本单位的是(  )A.CB.VC.AD.Ω
科目:高中物理
来源:学年上海市黄浦区敬业中学高二(上)期中物理试卷(解析版)
题型:选择题
下列电学物理量的单位中,属于基本单位的是( )A.CB.VC.AD.Ω
科目:高中物理
(08年长春外国语学校月考)关于电流,下列说法中哪些是正确的& &&&&&(&&& )A.通电导线中自由电子定向移动的速率等于电流的传导速率B.金属导线中电子运动的速率越大,导线中的电流就越大C.电流是一个矢量,其方向就是正电荷定向移动的方向D.国际单位制中,电流是一个基本物理量,其单位“安培”是基本单位
科目:高中物理
题型:阅读理解
&【选做题】本题包括A、B、C三小题,请选定其中两题,并在答题卡相应的答题区域内作答.若三题都做,则按A、B两题评分.A.(选修模块3—3)(12分)(1)(4分)判断以下说法的正误,在相应的括号内打“√”或“×”。& (A)用手捏面包,面包体积会缩小,说明分子之间有间隙。(&&&)& (B)温度相同的氢气和氧气,氢气分子和氧气分子的平均速率相同。(&&&)& (C)夏天荷叶上小水珠呈球状,是由于液体表面张力使其表面积具有收缩到最小趋势的缘故。(&&& )& (D)自然界中进行的一切与热现象有关的宏观过程都具有方向性。(&&&)(2)(4分)在“用油膜法估测分子的大小”的实验中,有下列操作步骤,请补充实验步骤的内容及实验步骤中的计算式:& (A)用滴管将浓度为的油酸酒精溶液逐滴滴入量筒,记下的油酸酒精溶液的滴数;& (B)将痱子粉末均匀地撒在浅盘内的水面上,用滴管吸取浓度为的油酸酒精溶液,逐滴向水面上滴入,直到油酸薄膜表面足够大,且不与器壁接触为止,记下滴入的滴数;& (C)________________▲________________;& (D)将画有油酸薄膜轮廓的玻璃板放在坐标纸上,以坐标纸上边长的正方形为单位,计算轮廓内正方形的个数;& (E)用上述测量的物理量可以估算出单个油酸分子的直径__▲____。(3)如图所示,上端开口的光滑圆柱形气缸竖直放置,截面积为40cm2的活塞将一定质量的气体和一形状不规则的固体A封闭在气缸内。在气缸内距缸底60cm&&& 处设有卡环ab,使活塞只能向上滑动。开始时活塞搁在ab上,缸内气体的压强等于大气压强为p0=1.0×105Pa,温度为300K。现缓慢加热汽缸内气体,当温度缓慢升高为330K,活塞恰好离开ab;当温度缓慢升高为360K时,活塞上升了4cm。求:(1)活塞的质量;(2)整个过程中气体对外界做的功。B.(选修模块3—4)(12分)(1)(4分)判断以下说法的正误,在相应的括号内打“√”或“×”。&& (A)光速不变原理是狭义相对论的两个基本假设之一。(&&&&&)&& (B)拍摄玻璃橱窗内的物品时,往往在镜头前加一个偏振片以增加透射光的强度。(&&&&& )&& (C)光在介质中的速度大于光在真空中的速度。(&&&&&)(D)变化的电场一定产生变化的磁场;变化的磁场一定产生变化的电场。(&&&&&)&&& (2)(4分)如图为一横波发生器的显示屏,可以显示出波由0点从左向右传播的图像,屏上每一小格长度为1cm。在t=0时刻横波发生器上能显示的波形如图所示。因为显示屏的局部故障,造成从水平位置A到B之间(不包括A、B两处)的波形无法被观察到(故障不影响波在发生器内传播)。此后的时间内,观察者看到波形相继传经B、C处,在t=5秒时,观察者看到C处恰好第三次(从C开始振动后算起)出现平衡位置,则该波的波速可能是(A)3.6cm/s&&& (B)4.8cm/s(C)6cm/s&&&& (D)7.2cm/s&&&(3)(4分)如图所示,某同学用插针法测定一半圆形玻璃砖的折射率。在平铺的白纸上垂直纸面插大头针、确定入射光线,并让入射光线过圆心,在玻璃砖(图中实线部分)另一侧垂直纸面插大头针,使挡住、的像,连接。图中为分界面,虚线半圆与玻璃砖对称,、分别是入射光线、折射光线与圆的交点,、均垂直于法线并分别交法线于、点。设的长度为,的长度为,的长度为,的长度为,求:①为较方便地表示出玻璃砖的折射率,需用刻度尺测量(用上述给&& 出量的字母表示),②玻璃砖的折射率&&C.(选修模块3—5)(12分)(1)下列说法中正确的是___▲_____ (A)X射线是处于激发态的原子核辐射出的(B)放射性元素发生一次β衰变,原子序数增加1 (C)光电效应揭示了光具有粒子性,康普顿效应揭示了光具有波动性(D)原子核的半衰期不仅与核内部自身因素有关,还与原子所处的化学状态& 有关(2)氢原子的能级如图所示,当氢原子从n=4向n=2的能级跃迁时,辐射的光&&子照射在某金属上,刚好能发生光电效应,则该金属的逸出功为 ▲& eV。现有一群处于n=5的能级的氢原子向低能级跃迁,在辐射出的各种频率的光子中,能使该金属发生光电效应的频率共有&&▲&&& 种。&(3)如图,质量为m的小球系于长L=0.8m的轻绳末端。绳的另一端系于O点。将小球移到轻绳水平位置后释放,小球摆到最低点A时,恰与原静止于水平面上的物块P相碰。碰后小球回摆,上升的最高点为B,A、B的高度差为h=0.2m。已知P的质量为M=3m,P与水平面间的动摩擦因数为μ=0.25,小球与P的相互作用时间极短。求P沿水平面滑行的距离。&&
科目:高中物理
来源:江苏省镇江市2010届高三考前最后一卷3
题型:实验题
&【选做题】本题包括A、B、C三小题,请选定其中两题,并在答题卡相应的答题区域内作答.若三题都做,则按A、B两题评分.A.(选修模块3—3)(12分)(1)(4分)判断以下说法的正误,在相应的括号内打“√”或“×”。& (A)用手捏面包,面包体积会缩小,说明分子之间有间隙。(&&&)& (B)温度相同的氢气和氧气,氢气分子和氧气分子的平均速率相同。(&&&)& (C)夏天荷叶上小水珠呈球状,是由于液体表面张力使其表面积具有收缩到最小趋势的缘故。(&&& )& (D)自然界中进行的一切与热现象有关的宏观过程都具有方向性。(&&&)(2)(4分)在“用油膜法估测分子的大小”的实验中,有下列操作步骤,请补充实验步骤的内容及实验步骤中的计算式:& (A)用滴管将浓度为的油酸酒精溶液逐滴滴入量筒,记下的油酸酒精溶液的滴数;& (B)将痱子粉末均匀地撒在浅盘内的水面上,用滴管吸取浓度为的油酸酒精溶液,逐滴向水面上滴入,直到油酸薄膜表面足够大,且不与器壁接触为止,记下滴入的滴数;& (C)________________▲________________;& (D)将画有油酸薄膜轮廓的玻璃板放在坐标纸上,以坐标纸上边长的正方形为单位,计算轮廓内正方形的个数;& (E)用上述测量的物理量可以估算出单个油酸分子的直径__▲____。(3)如图所示,上端开口的光滑圆柱形气缸竖直放置,截面积为40cm2的活塞将一定质量的气体和一形状不规则的固体A封闭在气缸内。在气缸内距缸底60cm&&& 处设有卡环ab,使活塞只能向上滑动。开始时活塞搁在ab上,缸内气体的压强等于大气压强为p0=1.0×105Pa,温度为300K。现缓慢加热汽缸内气体,当温度缓慢升高为330K,活塞恰好离开ab;当温度缓慢升高为360K时,活塞上升了4cm。求:(1)活塞的质量;(2)整个过程中气体对外界做的功。B.(选修模块3—4)(12分)(1)(4分)判断以下说法的正误,在相应的括号内打“√”或“×”。&& (A)光速不变原理是狭义相对论的两个基本假设之一。(&&&&&)&& (B)拍摄玻璃橱窗内的物品时,往往在镜头前加一个偏振片以增加透射光的强度。(&&&&& )&& (C)光在介质中的速度大于光在真空中的速度。(&&&&&)(D)变化的电场一定产生变化的磁场;变化的磁场一定产生变化的电场。(&&&&&)&&& (2)(4分)如图为一横波发生器的显示屏,可以显示出波由0点从左向右传播的图像,屏上每一小格长度为1cm。在t=0时刻横波发生器上能显示的波形如图所示。因为显示屏的局部故障,造成从水平位置A到B之间(不包括A、B两处)的波形无法被观察到(故障不影响波在发生器内传播)。此后的时间内,观察者看到波形相继传经B、C处,在t=5秒时,观察者看到C处恰好第三次(从C开始振动后算起)出现平衡位置,则该波的波速可能是(A)3.6cm/s&&& (B)4.8cm/s(C)6cm/s&&&& (D)7.2cm/s&&&(3)(4分)如图所示,某同学用插针法测定一半圆形玻璃砖的折射率。在平铺的白纸上垂直纸面插大头针、确定入射光线,并让入射光线过圆心,在玻璃砖(图中实线部分)另一侧垂直纸面插大头针,使挡住、的像,连接。图中为分界面,虚线半圆与玻璃砖对称,、分别是入射光线、折射光线与圆的交点,、均垂直于法线并分别交法线于、点。设的长度为,的长度为,的长度为,的长度为,求:①为较方便地表示出玻璃砖的折射率,需用刻度尺测量(用上述给&& 出量的字母表示),②玻璃砖的折射率&&C.(选修模块3—5)(12分)(1)下列说法中正确的是___▲_____ (A)X射线是处于激发态的原子核辐射出的(B)放射性元素发生一次β衰变,原子序数增加1 (C)光电效应揭示了光具有粒子性,康普顿效应揭示了光具有波动性(D)原子核的半衰期不仅与核内部自身因素有关,还与原子所处的化学状态& 有关(2)氢原子的能级如图所示,当氢原子从n=4向n=2的能级跃迁时,辐射的光&&子照射在某金属上,刚好能发生光电效应,则该金属的逸出功为 ▲& eV。现有一群处于n=5的能级的氢原子向低能级跃迁,在辐射出的各种频率的光子中,能使该金属发生光电效应的频率共有&&▲&&& 种。&(3)如图,质量为m的小球系于长L=0.8m的轻绳末端。绳的另一端系于O点。将小球移到轻绳水平位置后释放,小球摆到最低点A时,恰与原静止于水平面上的物块P相碰。碰后小球回摆,上升的最高点为B,A、B的高度差为h=0.2m。已知P的质量为M=3m,P与水平面间的动摩擦因数为μ=0.25,小球与P的相互作用时间极短。求P沿水平面滑行的距离。&&
科目:高中物理
题型:阅读理解
第九部分 稳恒电流第一讲 基本知识介绍第八部分《稳恒电流》包括两大块:一是“恒定电流”,二是“物质的导电性”。前者是对于电路的外部计算,后者则是深入微观空间,去解释电流的成因和比较不同种类的物质导电的情形有什么区别。应该说,第一块的知识和高考考纲对应得比较好,深化的部分是对复杂电路的计算(引入了一些新的处理手段)。第二块虽是全新的内容,但近几年的考试已经很少涉及,以至于很多奥赛培训资料都把它删掉了。鉴于在奥赛考纲中这部分内容还保留着,我们还是想粗略地介绍一下。一、欧姆定律1、电阻定律a、电阻定律&R =&ρb、金属的电阻率&ρ&=&ρ0(1 +&αt)2、欧姆定律a、外电路欧姆定律&U = IR&,顺着电流方向电势降落b、含源电路欧姆定律在如图8-1所示的含源电路中,从A点到B点,遵照原则:①遇电阻,顺电流方向电势降落(逆电流方向电势升高)②遇电源,正极到负极电势降落,负极到正极电势升高(与电流方向无关),可以得到以下关系UA&? IR ?&ε&? Ir = UB&这就是含源电路欧姆定律。c、闭合电路欧姆定律在图8-1中,若将A、B两点短接,则电流方向只可能向左,含源电路欧姆定律成为UA&+ IR ?&ε&+ Ir = UB&= UA即&ε&= IR + Ir&,或&I =&这就是闭合电路欧姆定律。值得注意的的是:①对于复杂电路,“干路电流I”不能做绝对的理解(任何要考察的一条路均可视为干路);②电源的概念也是相对的,它可以是多个电源的串、并联,也可以是电源和电阻组成的系统;③外电阻R可以是多个电阻的串、并联或混联,但不能包含电源。二、复杂电路的计算1、戴维南定理:一个由独立源、线性电阻、线性受控源组成的二端网络,可以用一个电压源和电阻串联的二端网络来等效。(事实上,也可等效为“电流源和电阻并联的的二端网络”——这就成了诺顿定理。)应用方法:其等效电路的电压源的电动势等于网络的开路电压,其串联电阻等于从端钮看进去该网络中所有独立源为零值时的等效电阻。2、基尔霍夫(克希科夫)定律a、基尔霍夫第一定律:在任一时刻流入电路中某一分节点的电流强度的总和,等于从该点流出的电流强度的总和。例如,在图8-2中,针对节点P&,有I2&+ I3&= I1&基尔霍夫第一定律也被称为“节点电流定律”,它是电荷受恒定律在电路中的具体体现。对于基尔霍夫第一定律的理解,近来已经拓展为:流入电路中某一“包容块”的电流强度的总和,等于从该“包容块”流出的电流强度的总和。b、基尔霍夫第二定律:在电路中任取一闭合回路,并规定正的绕行方向,其中电动势的代数和,等于各部分电阻(在交流电路中为阻抗)与电流强度乘积的代数和。例如,在图8-2中,针对闭合回路①&,有ε3&?&ε2&= I3&( r3&+ R2&+ r2&) ? I2R2&基尔霍夫第二定律事实上是含源部分电路欧姆定律的变体(☆同学们可以列方程 UP&= … = UP得到和上面完全相同的式子)。3、Y?Δ变换在难以看清串、并联关系的电路中,进行“Y型?Δ型”的相互转换常常是必要的。在图8-3所示的电路中☆同学们可以证明Δ→ Y的结论…Rc&=&Rb&=&Ra&=&Y→Δ的变换稍稍复杂一些,但我们仍然可以得到R1&=&R2&=&R3&=&三、电功和电功率1、电源使其他形式的能量转变为电能的装置。如发电机、电池等。发电机是将机械能转变为电能;干电池、蓄电池是将化学能转变为电能;光电池是将光能转变为电能;原子电池是将原子核放射能转变为电能;在电子设备中,有时也把变换电能形式的装置,如整流器等,作为电源看待。电源电动势定义为电源的开路电压,内阻则定义为没有电动势时电路通过电源所遇到的电阻。据此不难推出相同电源串联、并联,甚至不同电源串联、并联的时的电动势和内阻的值。例如,电动势、内阻分别为ε1&、r1和ε2&、r2的电源并联,构成的新电源的电动势ε和内阻r分别为(☆师生共同推导…)ε&=&r =&2、电功、电功率电流通过电路时,电场力对电荷作的功叫做电功W。单位时间内电场力所作的功叫做电功率P&。计算时,只有W = UIt和P = UI是完全没有条件的,对于不含源的纯电阻,电功和焦耳热重合,电功率则和热功率重合,有W = I2Rt =&t和P = I2R =&。对非纯电阻电路,电功和电热的关系依据能量守恒定律求解。&四、物质的导电性在不同的物质中,电荷定向移动形成电流的规律并不是完全相同的。1、金属中的电流即通常所谓的不含源纯电阻中的电流,规律遵从“外电路欧姆定律”。2、液体导电能够导电的液体叫电解液(不包括液态金属)。电解液中离解出的正负离子导电是液体导电的特点(如:硫酸铜分子在通常情况下是电中性的,但它在溶液里受水分子的作用就会离解成铜离子Cu2+和硫酸根离子S,它们在电场力的作用下定向移动形成电流)。在电解液中加电场时,在两个电极上(或电极旁)同时产生化学反应的过程叫作“电解”。电解的结果是在两个极板上(或电极旁)生成新的物质。液体导电遵从法拉第电解定律——法拉第电解第一定律:电解时在电极上析出或溶解的物质的质量和电流强度、跟通电时间成正比。表达式:m = kIt&=&KQ&(式中Q为析出质量为m的物质所需要的电量;K为电化当量,电化当量的数值随着被析出的物质种类而不同,某种物质的电化当量在数值上等于通过1C电量时析出的该种物质的质量,其单位为kg/C。)法拉第电解第二定律:物质的电化当量K和它的化学当量成正比。某种物质的化学当量是该物质的摩尔质量M(克原子量)和它的化合价n的比值,即&K =&&,而F为法拉第常数,对任何物质都相同,F = 9.65×104C/mol&。将两个定律联立可得:m =&Q&。3、气体导电气体导电是很不容易的,它的前提是气体中必须出现可以定向移动的离子或电子。按照“载流子”出现方式的不同,可以把气体放电分为两大类——a、被激放电在地面放射性元素的辐照以及紫外线和宇宙射线等的作用下,会有少量气体分子或原子被电离,或在有些灯管内,通电的灯丝也会发射电子,这些“载流子”均会在电场力作用下产生定向移动形成电流。这种情况下的电流一般比较微弱,且遵从欧姆定律。典型的被激放电情形有b、自激放电但是,当电场足够强,电子动能足够大,它们和中性气体相碰撞时,可以使中性分子电离,即所谓碰撞电离。同时,在正离子向阴极运动时,由于以很大的速度撞到阴极上,还可能从阴极表面上打出电子来,这种现象称为二次电子发射。碰撞电离和二次电子发射使气体中在很短的时间内出现了大量的电子和正离子,电流亦迅速增大。这种现象被称为自激放电。自激放电不遵从欧姆定律。常见的自激放电有四大类:辉光放电、弧光放电、火花放电、电晕放电。4、超导现象据金属电阻率和温度的关系,电阻率会随着温度的降低和降低。当电阻率降为零时,称为超导现象。电阻率为零时对应的温度称为临界温度。超导现象首先是荷兰物理学家昂尼斯发现的。超导的应用前景是显而易见且相当广阔的。但由于一般金属的临界温度一般都非常低,故产业化的价值不大,为了解决这个矛盾,科学家们致力于寻找或合成临界温度比较切合实际的材料就成了当今前沿科技的一个热门领域。当前人们的研究主要是集中在合成材料方面,临界温度已经超过100K,当然,这个温度距产业化的期望值还很远。5、半导体半导体的电阻率界于导体和绝缘体之间,且ρ
科目:高中物理
题型:阅读理解
第八部分 静电场第一讲 基本知识介绍在奥赛考纲中,静电学知识点数目不算多,总数和高考考纲基本相同,但在个别知识点上,奥赛的要求显然更加深化了:如非匀强电场中电势的计算、电容器的连接和静电能计算、电介质的极化等。在处理物理问题的方法上,对无限分割和叠加原理提出了更高的要求。如果把静电场的问题分为两部分,那就是电场本身的问题、和对场中带电体的研究,高考考纲比较注重第二部分中带电粒子的运动问题,而奥赛考纲更注重第一部分和第二部分中的静态问题。也就是说,奥赛关注的是电场中更本质的内容,关注的是纵向的深化和而非横向的综合。一、电场强度1、实验定律a、库仑定律内容;条件:⑴点电荷,⑵真空,⑶点电荷静止或相对静止。事实上,条件⑴和⑵均不能视为对库仑定律的限制,因为叠加原理可以将点电荷之间的静电力应用到一般带电体,非真空介质可以通过介电常数将k进行修正(如果介质分布是均匀和“充分宽广”的,一般认为k′= k /εr)。只有条件⑶,它才是静电学的基本前提和出发点(但这一点又是常常被忽视和被不恰当地“综合应用”的)。b、电荷守恒定律c、叠加原理2、电场强度a、电场强度的定义电场的概念;试探电荷(检验电荷);定义意味着一种适用于任何电场的对电场的检测手段;电场线是抽象而直观地描述电场有效工具(电场线的基本属性)。b、不同电场中场强的计算决定电场强弱的因素有两个:场源(带电量和带电体的形状)和空间位置。这可以从不同电场的场强决定式看出——⑴点电荷:E = k结合点电荷的场强和叠加原理,我们可以求出任何电场的场强,如——⑵均匀带电环,垂直环面轴线上的某点P:E =&,其中r和R的意义见图7-1。⑶均匀带电球壳内部:E内&= 0外部:E外&= k&,其中r指考察点到球心的距离如果球壳是有厚度的的(内径R1&、外径R2),在壳体中(R1<r<R2):E =&&,其中ρ为电荷体密度。这个式子的物理意义可以参照万有引力定律当中(条件部分)的“剥皮法则”理解〔即为图7-2中虚线以内部分的总电量…〕。⑷无限长均匀带电直线(电荷线密度为λ):E =&⑸无限大均匀带电平面(电荷面密度为σ):E = 2πkσ二、电势1、电势:把一电荷从P点移到参考点P0时电场力所做的功W与该电荷电量q的比值,即U =&参考点即电势为零的点,通常取无穷远或大地为参考点。和场强一样,电势是属于场本身的物理量。W则为电荷的电势能。2、典型电场的电势a、点电荷以无穷远为参考点,U = kb、均匀带电球壳以无穷远为参考点,U外&= k&,U内&= k3、电势的叠加由于电势的是标量,所以电势的叠加服从代数加法。很显然,有了点电荷电势的表达式和叠加原理,我们可以求出任何电场的电势分布。4、电场力对电荷做功WAB&= q(UA&-&UB)= qUAB&三、静电场中的导体静电感应→静电平衡(狭义和广义)→静电屏蔽1、静电平衡的特征可以总结为以下三层含义——a、导体内部的合场强为零;表面的合场强不为零且一般各处不等,表面的合场强方向总是垂直导体表面。b、导体是等势体,表面是等势面。c、导体内部没有净电荷;孤立导体的净电荷在表面的分布情况取决于导体表面的曲率。2、静电屏蔽导体壳(网罩)不接地时,可以实现外部对内部的屏蔽,但不能实现内部对外部的屏蔽;导体壳(网罩)接地后,既可实现外部对内部的屏蔽,也可实现内部对外部的屏蔽。四、电容1、电容器孤立导体电容器→一般电容器2、电容a、定义式&C =&b、决定式。决定电容器电容的因素是:导体的形状和位置关系、绝缘介质的种类,所以不同电容器有不同的电容⑴平行板电容器&C =&&=&&,其中ε为绝对介电常数(真空中ε0&=&&,其它介质中ε=&),εr则为相对介电常数,εr&=&&。⑵柱形电容器:C =&⑶球形电容器:C =&3、电容器的连接a、串联&&=&+++&…&+b、并联&C = C1&+ C2&+ C3&+&…&+ Cn&4、电容器的能量用图7-3表征电容器的充电过程,“搬运”电荷做功W就是图中阴影的面积,这也就是电容器的储能E&,所以E =&q0U0&=&C&=&电场的能量。电容器储存的能量究竟是属于电荷还是属于电场?正确答案是后者,因此,我们可以将电容器的能量用场强E表示。对平行板电容器&E总&=&E2&认为电场能均匀分布在电场中,则单位体积的电场储能&w =&E2&。而且,这以结论适用于非匀强电场。五、电介质的极化1、电介质的极化a、电介质分为两类:无极分子和有极分子,前者是指在没有外电场时每个分子的正、负电荷“重心”彼此重合(如气态的H2&、O2&、N2和CO2),后者则反之(如气态的H2O&、SO2和液态的水硝基笨)b、电介质的极化:当介质中存在外电场时,无极分子会变为有极分子,有极分子会由原来的杂乱排列变成规则排列,如图7-4所示。2、束缚电荷、自由电荷、极化电荷与宏观过剩电荷a、束缚电荷与自由电荷:在图7-4中,电介质左右两端分别显现负电和正电,但这些电荷并不能自由移动,因此称为束缚电荷,除了电介质,导体中的原子核和内层电子也是束缚电荷;反之,能够自由移动的电荷称为自由电荷。事实上,导体中存在束缚电荷与自由电荷,绝缘体中也存在束缚电荷和自由电荷,只是它们的比例差异较大而已。b、极化电荷是更严格意义上的束缚电荷,就是指图7-4中电介质两端显现的电荷。而宏观过剩电荷是相对极化电荷来说的,它是指可以自由移动的净电荷。宏观过剩电荷与极化电荷的重要区别是:前者能够用来冲放电,也能用仪表测量,但后者却不能。第二讲 重要模型与专题一、场强和电场力【物理情形1】试证明:均匀带电球壳内部任意一点的场强均为零。【模型分析】这是一个叠加原理应用的基本事例。如图7-5所示,在球壳内取一点P&,以P为顶点做两个对顶的、顶角很小的锥体,锥体与球面相交得到球面上的两个面元ΔS1和ΔS2&,设球面的电荷面密度为σ,则这两个面元在P点激发的场强分别为ΔE1&= kΔE2&= k为了弄清ΔE1和ΔE2的大小关系,引进锥体顶部的立体角ΔΩ&,显然&=&ΔΩ&=&所以&ΔE1&= k&,ΔE2&= k&,即:ΔE1&=&ΔE2&,而它们的方向是相反的,故在P点激发的合场强为零。同理,其它各个相对的面元ΔS3和ΔS4&、ΔS5和ΔS6&…&激发的合场强均为零。原命题得证。【模型变换】半径为R的均匀带电球面,电荷的面密度为σ,试求球心处的电场强度。【解析】如图7-6所示,在球面上的P处取一极小的面元ΔS&,它在球心O点激发的场强大小为ΔE = k&,方向由P指向O点。无穷多个这样的面元激发的场强大小和ΔS激发的完全相同,但方向各不相同,它们矢量合成的效果怎样呢?这里我们要大胆地预见——由于由于在x方向、y方向上的对称性,Σ&=&Σ&= 0&,最后的ΣE =&ΣEz&,所以先求ΔEz&=&ΔEcosθ= k&,而且ΔScosθ为面元在xoy平面的投影,设为ΔS′所以&ΣEz&=&ΣΔS′而&ΣΔS′=&πR2&【答案】E = kπσ&,方向垂直边界线所在的平面。〖学员思考〗如果这个半球面在yoz平面的两边均匀带有异种电荷,面密度仍为σ,那么,球心处的场强又是多少?〖推荐解法〗将半球面看成4个球面,每个球面在x、y、z三个方向上分量均为&kπσ,能够对称抵消的将是y、z两个方向上的分量,因此ΣE = ΣEx&…〖答案〗大小为kπσ,方向沿x轴方向(由带正电的一方指向带负电的一方)。【物理情形2】有一个均匀的带电球体,球心在O点,半径为R ,电荷体密度为ρ ,球体内有一个球形空腔,空腔球心在O′点,半径为R′,= a ,如图7-7所示,试求空腔中各点的场强。【模型分析】这里涉及两个知识的应用:一是均匀带电球体的场强定式(它也是来自叠加原理,这里具体用到的是球体内部的结论,即“剥皮法则”),二是填补法。将球体和空腔看成完整的带正电的大球和带负电(电荷体密度相等)的小球的集合,对于空腔中任意一点P ,设&= r1&,&= r2&,则大球激发的场强为E1&= k&=&kρπr1&,方向由O指向P“小球”激发的场强为E2&= k&=&kρπr2&,方向由P指向O′E1和E2的矢量合成遵从平行四边形法则,ΣE的方向如图。又由于矢量三角形PE1ΣE和空间位置三角形OP O′是相似的,ΣE的大小和方向就不难确定了。【答案】恒为kρπa ,方向均沿O → O′,空腔里的电场是匀强电场。〖学员思考〗如果在模型2中的OO′连线上O′一侧距离O为b(b>R)的地方放一个电量为q的点电荷,它受到的电场力将为多大?〖解说〗上面解法的按部就班应用…〖答〗πkρq〔?〕。二、电势、电量与电场力的功【物理情形1】如图7-8所示,半径为R的圆环均匀带电,电荷线密度为λ,圆心在O点,过圆心跟环面垂直的轴线上有P点,&= r&,以无穷远为参考点,试求P点的电势UP&。【模型分析】这是一个电势标量叠加的简单模型。先在圆环上取一个元段ΔL&,它在P点形成的电势ΔU = k环共有段,各段在P点形成的电势相同,而且它们是标量叠加。【答案】UP&=&〖思考〗如果上题中知道的是环的总电量Q ,则UP的结论为多少?如果这个总电量的分布不是均匀的,结论会改变吗?〖答〗UP&=&&;结论不会改变。〖再思考〗将环换成半径为R的薄球壳,总电量仍为Q ,试问:(1)当电量均匀分布时,球心电势为多少?球内(包括表面)各点电势为多少?(2)当电量不均匀分布时,球心电势为多少?球内(包括表面)各点电势为多少?〖解说〗(1)球心电势的求解从略;球内任一点的求解参看图7-5ΔU1&= k= k·= kσΔΩΔU2&= kσΔΩ它们代数叠加成 ΔU = ΔU1&+ ΔU2&= kσΔΩ而 r1&+ r2&= 2Rcosα所以 ΔU = 2RkσΔΩ所有面元形成电势的叠加&ΣU =&2RkσΣΔΩ注意:一个完整球面的ΣΔΩ = 4π(单位:球面度sr),但作为对顶的锥角,ΣΔΩ只能是2π ,所以——ΣU =&4πRkσ= k(2)球心电势的求解和〖思考〗相同;球内任一点的电势求解可以从(1)问的求解过程得到结论的反证。〖答〗(1)球心、球内任一点的电势均为k&;(2)球心电势仍为k&,但其它各点的电势将随电量的分布情况的不同而不同(内部不再是等势体,球面不再是等势面)。【相关应用】如图7-9所示,球形导体空腔内、外壁的半径分别为R1和R2&,带有净电量+q&,现在其内部距球心为r的地方放一个电量为+Q的点电荷,试求球心处的电势。【解析】由于静电感应,球壳的内、外壁形成两个带电球壳。球心电势是两个球壳形成电势、点电荷形成电势的合效果。根据静电感应的尝试,内壁的电荷量为-Q&,外壁的电荷量为+Q+q&,虽然内壁的带电是不均匀的,根据上面的结论,其在球心形成的电势仍可以应用定式,所以…【答案】Uo&= k&-&k&+ k&。〖反馈练习〗如图7-10所示,两个极薄的同心导体球壳A和B,半径分别为RA和RB&,现让A壳接地,而在B壳的外部距球心d的地方放一个电量为+q的点电荷。试求:(1)A球壳的感应电荷量;(2)外球壳的电势。〖解说〗这是一个更为复杂的静电感应情形,B壳将形成图示的感应电荷分布(但没有净电量),A壳的情形未画出(有净电量),它们的感应电荷分布都是不均匀的。此外,我们还要用到一个重要的常识:接地导体(A壳)的电势为零。但值得注意的是,这里的“为零”是一个合效果,它是点电荷q 、A壳、B壳(带同样电荷时)单独存在时在A中形成的的电势的代数和,所以,当我们以球心O点为对象,有UO&= k&+ k&+ k&=&0QB应指B球壳上的净电荷量,故 QB&= 0所以 QA&= -q☆学员讨论:A壳的各处电势均为零,我们的方程能不能针对A壳表面上的某点去列?(答:不能,非均匀带电球壳的球心以外的点不能应用定式!)基于刚才的讨论,求B的电势时也只能求B的球心的电势(独立的B壳是等势体,球心电势即为所求)——UB&=&k&+ k〖答〗(1)QA&= -q ;(2)UB&= k(1-) 。【物理情形2】图7-11中,三根实线表示三根首尾相连的等长绝缘细棒,每根棒上的电荷分布情况与绝缘棒都换成导体棒时完全相同。点A是Δabc的中心,点B则与A相对bc棒对称,且已测得它们的电势分别为UA和UB&。试问:若将ab棒取走,A、B两点的电势将变为多少?【模型分析】由于细棒上的电荷分布既不均匀、三根细棒也没有构成环形,故前面的定式不能直接应用。若用元段分割→叠加,也具有相当的困难。所以这里介绍另一种求电势的方法。每根细棒的电荷分布虽然复杂,但相对各自的中点必然是对称的,而且三根棒的总电量、分布情况彼此必然相同。这就意味着:①三棒对A点的电势贡献都相同(可设为U1);②ab棒、ac棒对B点的电势贡献相同(可设为U2);③bc棒对A、B两点的贡献相同(为U1)。所以,取走ab前& 3U1&= UA& & & & & & & & &2U2&+ U1&= UB取走ab后,因三棒是绝缘体,电荷分布不变,故电势贡献不变,所以& UA′= 2U1& & & & & & & & &UB′= U1&+ U2【答案】UA′=&UA&;UB′=&UA&+&UB&。〖模型变换〗正四面体盒子由彼此绝缘的四块导体板构成,各导体板带电且电势分别为U1&、U2&、U3和U4&,则盒子中心点O的电势U等于多少?〖解说〗此处的四块板子虽然位置相对O点具有对称性,但电量各不相同,因此对O点的电势贡献也不相同,所以应该想一点办法——我们用“填补法”将电量不对称的情形加以改观:先将每一块导体板复制三块,作成一个正四面体盒子,然后将这四个盒子位置重合地放置——构成一个有四层壁的新盒子。在这个新盒子中,每个壁的电量将是完全相同的(为原来四块板的电量之和)、电势也完全相同(为U1&+ U2&+ U3&+ U4),新盒子表面就构成了一个等势面、整个盒子也是一个等势体,故新盒子的中心电势为U′= U1&+ U2&+ U3&+ U4&最后回到原来的单层盒子,中心电势必为 U =&&U′〖答〗U =&(U1&+ U2&+ U3&+ U4)。☆学员讨论:刚才的这种解题思想是否适用于“物理情形2”?(答:不行,因为三角形各边上电势虽然相等,但中点的电势和边上的并不相等。)〖反馈练习〗电荷q均匀分布在半球面ACB上,球面半径为R ,CD为通过半球顶点C和球心O的轴线,如图7-12所示。P、Q为CD轴线上相对O点对称的两点,已知P点的电势为UP&,试求Q点的电势UQ&。〖解说〗这又是一个填补法的应用。将半球面补成完整球面,并令右边内、外层均匀地带上电量为q的电荷,如图7-12所示。从电量的角度看,右半球面可以看作不存在,故这时P、Q的电势不会有任何改变。而换一个角度看,P、Q的电势可以看成是两者的叠加:①带电量为2q的完整球面;②带电量为-q的半球面。考查P点,UP&= k&+ U半球面其中 U半球面显然和为填补时Q点的电势大小相等、符号相反,即 U半球面= -UQ&以上的两个关系已经足以解题了。〖答〗UQ&= k&- UP&。【物理情形3】如图7-13所示,A、B两点相距2L&,圆弧是以B为圆心、L为半径的半圆。A处放有电量为q的电荷,B处放有电量为-q的点电荷。试问:(1)将单位正电荷从O点沿移到D点,电场力对它做了多少功?(2)将单位负电荷从D点沿AB的延长线移到无穷远处去,电场力对它做多少功?【模型分析】电势叠加和关系WAB&= q(UA&-&UB)= qUAB的基本应用。UO&= k&+ k&= 0UD&= k&+ k&=&-U∞&= 0再用功与电势的关系即可。【答案】(1);(2)。&【相关应用】在不计重力空间,有A、B两个带电小球,电量分别为q1和q2&,质量分别为m1和m2&,被固定在相距L的两点。试问:(1)若解除A球的固定,它能获得的最大动能是多少?(2)若同时解除两球的固定,它们各自的获得的最大动能是多少?(3)未解除固定时,这个系统的静电势能是多少?【解说】第(1)问甚间;第(2)问在能量方面类比反冲装置的能量计算,另启用动量守恒关系;第(3)问是在前两问基础上得出的必然结论…(这里就回到了一个基本的观念斧正:势能是属于场和场中物体的系统,而非单纯属于场中物体——这在过去一直是被忽视的。在两个点电荷的环境中,我们通常说“两个点电荷的势能”是多少。)【答】(1)k;(2)Ek1&=&k&,Ek2&=&k;(3)k&。〖思考〗设三个点电荷的电量分别为q1&、q2和q3&,两两相距为r12&、r23和r31&,则这个点电荷系统的静电势能是多少?〖解〗略。〖答〗k(++)。〖反馈应用〗如图7-14所示,三个带同种电荷的相同金属小球,每个球的质量均为m 、电量均为q ,用长度为L的三根绝缘轻绳连接着,系统放在光滑、绝缘的水平面上。现将其中的一根绳子剪断,三个球将开始运动起来,试求中间这个小球的最大速度。〖解〗设剪断的是1、3之间的绳子,动力学分析易知,2球获得最大动能时,1、2之间的绳子与2、3之间的绳子刚好应该在一条直线上。而且由动量守恒知,三球不可能有沿绳子方向的速度。设2球的速度为v ,1球和3球的速度为v′,则动量关系 mv + 2m v′= 0能量关系 3k&= 2 k&+ k&+&mv2&+&2m解以上两式即可的v值。〖答〗v = q&。三、电场中的导体和电介质【物理情形】两块平行放置的很大的金属薄板A和B,面积都是S&,间距为d(d远小于金属板的线度),已知A板带净电量+Q1&,B板带尽电量+Q2&,且Q2<Q1&,试求:(1)两板内外表面的电量分别是多少;(2)空间各处的场强;(3)两板间的电势差。【模型分析】由于静电感应,A、B两板的四个平面的电量将呈现一定规律的分布(金属板虽然很薄,但内部合场强为零的结论还是存在的);这里应注意金属板“很大”的前提条件,它事实上是指物理无穷大,因此,可以应用无限大平板的场强定式。为方便解题,做图7-15,忽略边缘效应,四个面的电荷分布应是均匀的,设四个面的电荷面密度分别为σ1&、σ2&、σ3和σ4&,显然(σ1&+ σ2)S = Q1&(σ3&+ σ4)S = Q2&A板内部空间场强为零,有 2πk(σ1&?&σ2&?&σ3&?&σ4)= 0A板内部空间场强为零,有 2πk(σ1&+&σ2&+&σ3&?&σ4)= 0解以上四式易得 σ1&=&σ4&=&& & & & & & & &σ2&= ?σ3&=&有了四个面的电荷密度,Ⅰ、Ⅱ、Ⅲ空间的场强就好求了〔如EⅡ&=2πk(σ1&+&σ2&?&σ3&?&σ4)= 2πk〕。最后,UAB&= EⅡd【答案】(1)A板外侧电量、A板内侧电量,B板内侧电量?、B板外侧电量;(2)A板外侧空间场强2πk,方向垂直A板向外,A、B板之间空间场强2πk,方向由A垂直指向B,B板外侧空间场强2πk,方向垂直B板向外;(3)A、B两板的电势差为2πkd,A板电势高。〖学员思考〗如果两板带等量异号的净电荷,两板的外侧空间场强等于多少?(答:为零。)〖学员讨论〗(原模型中)作为一个电容器,它的“电量”是多少(答:)?如果在板间充满相对介电常数为εr的电介质,是否会影响四个面的电荷分布(答:不会)?是否会影响三个空间的场强(答:只会影响Ⅱ空间的场强)?〖学员讨论〗(原模型中)我们是否可以求出A、B两板之间的静电力?〔答:可以;以A为对象,外侧受力·(方向相左),内侧受力·(方向向右),它们合成即可,结论为F =&Q1Q2&,排斥力。〕【模型变换】如图7-16所示,一平行板电容器,极板面积为S&,其上半部为真空,而下半部充满相对介电常数为εr的均匀电介质,当两极板分别带上+Q和?Q的电量后,试求:(1)板上自由电荷的分布;(2)两板之间的场强;(3)介质表面的极化电荷。【解说】电介质的充入虽然不能改变内表面的电量总数,但由于改变了场强,故对电荷的分布情况肯定有影响。设真空部分电量为Q1&,介质部分电量为Q2&,显然有Q1&+ Q2&= Q两板分别为等势体,将电容器看成上下两个电容器的并联,必有U1&= U2&即&&=&&,即&&=&解以上两式即可得Q1和Q2&。场强可以根据E =&关系求解,比较常规(上下部分的场强相等)。上下部分的电量是不等的,但场强居然相等,这怎么解释?从公式的角度看,E = 2πkσ(单面平板),当k&、σ同时改变,可以保持E不变,但这是一种结论所展示的表象。从内在的角度看,k的改变正是由于极化电荷的出现所致,也就是说,极化电荷的存在相当于在真空中形成了一个新的电场,正是这个电场与自由电荷(在真空中)形成的电场叠加成为E2&,所以E2&= 4πk(σ&?&σ′)= 4πk(&?&)请注意:①这里的σ′和Q′是指极化电荷的面密度和总量;②&E = 4πkσ的关系是由两个带电面叠加的合效果。【答案】(1)真空部分的电量为Q&,介质部分的电量为Q&;(2)整个空间的场强均为&;(3)Q&。〖思考应用〗一个带电量为Q的金属小球,周围充满相对介电常数为εr的均匀电介质,试求与与导体表面接触的介质表面的极化电荷量。〖解〗略。〖答〗Q′=&Q 。四、电容器的相关计算【物理情形1】由许多个电容为C的电容器组成一个如图7-17所示的多级网络,试问:(1)在最后一级的右边并联一个多大电容C′,可使整个网络的A、B两端电容也为C′?(2)不接C′,但无限地增加网络的级数,整个网络A、B两端的总电容是多少?【模型分析】这是一个练习电容电路简化基本事例。第(1)问中,未给出具体级数,一般结论应适用特殊情形:令级数为1&,于是&+&&=&&解C′即可。第(2)问中,因为“无限”,所以“无限加一级后仍为无限”,不难得出方程&+&&=&【答案】(1)C&;(2)C&。【相关模型】在图7-18所示的电路中,已知C1&= C2&= C3&= C9&= 1μF&,C4&= C5&= C6&= C7&= 2μF&,C8&= C10&= 3μF&,试求A、B之间的等效电容。【解说】对于既非串联也非并联的电路,需要用到一种“Δ→Y型变换”,参见图7-19,根据三个端点之间的电容等效,容易得出定式——Δ→Y型:Ca&=&& & & & & Cb&=&& & & & & Cc&=&Y→Δ型:C1&=&& & & & &C2&=&& & & & &C3&=&有了这样的定式后,我们便可以进行如图7-20所示的四步电路简化(为了方便,电容不宜引进新的符号表达,而是直接将变换后的量值标示在图中)——【答】约2.23μF&。【物理情形2】如图7-21所示的电路中,三个电容器完全相同,电源电动势ε1&= 3.0V&,ε2&= 4.5V,开关K1和K2接通前电容器均未带电,试求K1和K2接通后三个电容器的电压Uao&、Ubo和Uco各为多少。【解说】这是一个考查电容器电路的基本习题,解题的关键是要抓与o相连的三块极板(俗称“孤岛”)的总电量为零。电量关系:++= 0电势关系:ε1&= Uao&+ Uob&= Uao&? Ubo&& & & & &&ε2&= Ubo&+ Uoc&= Ubo&? Uco&解以上三式即可。【答】Uao&= 3.5V&,Ubo&= 0.5V&,Uco&= ?4.0V&。【伸展应用】如图7-22所示,由n个单元组成的电容器网络,每一个单元由三个电容器连接而成,其中有两个的电容为3C ,另一个的电容为3C 。以a、b为网络的输入端,a′、b′为输出端,今在a、b间加一个恒定电压U ,而在a′b′间接一个电容为C的电容器,试求:(1)从第k单元输入端算起,后面所有电容器储存的总电能;(2)若把第一单元输出端与后面断开,再除去电源,并把它的输入端短路,则这个单元的三个电容器储存的总电能是多少?【解说】这是一个结合网络计算和“孤岛现象”的典型事例。(1)类似“物理情形1”的计算,可得 C总&= Ck&= C所以,从输入端算起,第k单元后的电压的经验公式为 Uk&=&再算能量储存就不难了。(2)断开前,可以算出第一单元的三个电容器、以及后面“系统”的电量分配如图7-23中的左图所示。这时,C1的右板和C2的左板(或C2的下板和C3的右板)形成“孤岛”。此后,电容器的相互充电过程(C3类比为“电源”)满足——电量关系:Q1′= Q3′& & & & & Q2′+ Q3′=&电势关系:+&&=&从以上三式解得 Q1′= Q3′=&&,Q2′=&&,这样系统的储能就可以用得出了。【答】(1)Ek&=&;(2)&。〖学员思考〗图7-23展示的过程中,始末状态的电容器储能是否一样?(答:不一样;在相互充电的过程中,导线消耗的焦耳热已不可忽略。)☆第七部分完☆
精英家教网新版app上线啦!用app只需扫描书本条形码就能找到作业,家长给孩子检查作业更省心,同学们作业对答案更方便,扫描上方二维码立刻安装!
请输入姓名
请输入手机号

我要回帖

更多关于 电学动漫 的文章

 

随机推荐