为什么gfp的绿色荧光在转基因植株鉴定的幼苗根尖区荧光强

拒绝访问 |
| 百度云加速
请打开cookies.
此网站 () 的管理员禁止了您的访问。原因是您的访问包含了非浏览器特征(3bb3-ua98).
重新安装浏览器,或使用别的浏览器君,已阅读到文档的结尾了呢~~
利用绿色荧光蛋白 GFP 作为报告基因 检测转基因植物——所有资料文档均为本人悉心收集,全部是文档中的精品,绝对值得下载收藏!
扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
利用绿色荧光蛋白 GFP 作为报告基因 检测转基因植物
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='/DocinViewer-4.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口关注今日:1 | 主题:65852
微信扫一扫
【求助】GFP的荧光观测
页码直达:
这个帖子发布于8年零226天前,其中的信息可能已发生改变或有所发展。
我现在所用的拟南芥是GFP标记的,虽然已筛选到纯合子,但我发现不同的植株似乎荧光强度不同,所以我想先筛出表达强的再收获种子。但我目前观测GFP的荧光是在荧光显微镜下根尖压片后观测(因为根的荧光强度最高),这样一来,观测后的拟南芥苗就无法成活,所以无法实现筛选后种植的目的。希望能有高手教我一个不损伤幼苗而又能观测GFP荧光的方法
不知道邀请谁?试试他们
微信扫一扫
广告宣传推广
政治敏感、违法虚假信息
恶意灌水、重复发帖
违规侵权、站友争执
附件异常、链接失效
等拟南芥苗长大一点再取部分根系观察荧光不行么?
微信扫一扫
广告宣传推广
政治敏感、违法虚假信息
恶意灌水、重复发帖
违规侵权、站友争执
附件异常、链接失效
不行啊,必须是10天一内的幼苗才能从根部观察到荧光的
微信扫一扫
广告宣传推广
政治敏感、违法虚假信息
恶意灌水、重复发帖
违规侵权、站友争执
附件异常、链接失效
不大懂,植物细胞是不是都会有自发荧光呢?如果有的话,就用共聚焦显微镜试试
微信扫一扫
广告宣传推广
政治敏感、违法虚假信息
恶意灌水、重复发帖
违规侵权、站友争执
附件异常、链接失效
可以装水片,不要压,小心不要干死了,看过了还能种下去的,另外要注意有野生型的空白对照,植物自发荧光还是比较强的,要注意排除假阳性
微信扫一扫
广告宣传推广
政治敏感、违法虚假信息
恶意灌水、重复发帖
违规侵权、站友争执
附件异常、链接失效
非常感谢blueleaf227的帮助,另外很不好意思的再询问一下水片怎么制作呀?至于假阳性,由于我的苗是HYP筛过的第四代还会有假阳性吗?
微信扫一扫
广告宣传推广
政治敏感、违法虚假信息
恶意灌水、重复发帖
违规侵权、站友争执
附件异常、链接失效
就是水装片,用24X60mM的盖玻片做底,放上苗,稍微多加一点水(小心不要把显微镜给泡了),上边盖上18X18mm的盖玻片(不要压),在倒置荧光显微镜下观察,(如果没有倒置的就用正置的低倍镜观察)H筛过得是表明转基因成功,但是基因表达也是有强有弱,你得挑一个强的株系种才比较好,对吧?建议不要用繁种多代以后的,据个人经验会有衰减,就是荧光越来越弱
微信扫一扫
广告宣传推广
政治敏感、违法虚假信息
恶意灌水、重复发帖
违规侵权、站友争执
附件异常、链接失效
太感谢了!
微信扫一扫
广告宣传推广
政治敏感、违法虚假信息
恶意灌水、重复发帖
违规侵权、站友争执
附件异常、链接失效
还有一点要注意,从培养基上取下的苗要尽快看,尽快种下,总之对苗损伤越小当然越好
微信扫一扫
广告宣传推广
政治敏感、违法虚假信息
恶意灌水、重复发帖
违规侵权、站友争执
附件异常、链接失效
关于丁香园当前位置:
>>>绿色荧光蛋白基因(GFP)被发现以来,一直作为一个监测完整细胞和组..
绿色荧光蛋白基因(GFP)被发现以来,一直作为一个监测完整细胞和组织内基因表达及蛋白位的理想标记。请根据图表回答下列问题。
(1)若图中GFP的M端伸出的核苷酸的碱基序列是T↓TCGA,N端伸出的核苷酸的碱基序列是C↑TGCA,则在构建含该GFP的重组质粒A时,应选用限制酶_____,再对_____进行切割。(2)若对符合设计要求的重级质粒A进行酶切,假设所用的酶均可将识别位点完全切开,请根据图表中的信息分析,若采用BamH1和Pst1酶切,可得到________种DNA片段。(3)检测GFP是否已重组到猪胎儿成纤维细胞的染色体DNA上,可在荧光显微镜下观察GFP的表达,图中绿色荧光蛋白转基因克隆猪的转基因操作中的GFP既是______也是_____。(4)绿色荧光蛋白转基因克隆猪的培育过程中涉及到多项现代生物技术,图中⑤⑥⑦过程属于_________,而⑨过程属于____________。
题型:读图填空题难度:偏难来源:0110
(1)HindIII和PstⅠ&&& Ti质粒(2)2(3)目的基因&&& 标记基因(4)核移植& &胚胎移植
马上分享给同学
据魔方格专家权威分析,试题“绿色荧光蛋白基因(GFP)被发现以来,一直作为一个监测完整细胞和组..”主要考查你对&&基因工程的应用,DNA重组技术的基本工具,基因工程的基本操作程序&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
基因工程的应用DNA重组技术的基本工具基因工程的基本操作程序
基因工程的应用:1、植物基因工程:
2、动物基因工程:
3、基因诊断与基因治疗(1)基因诊断:DNA分子杂交法(即DNA探针法),该方法是根据碱基互补配对原则,把互补的双链 DNA解开,把单链的DNA小片段用同位素、荧光分子或化学发光催化剂等进行标记,之后同被检测的DNA 中的同源互补序列杂交,从而检出所要查明的DNA或基因。 (2)基因治疗的方法:基因置换、基因修复、基因增补、基因失活等。 (3)基因治疗的途径①体外基因治疗:先从病人体内获得某种细胞进行培养,然后在体外完成基因转移,再筛选成功转移的细胞扩增培养,最后重新输入患者体内。如腺苷酸脱氨酶基因的转移。②体内基因治疗:用基因工程的方法,直接向人体 知识拓展:1、Bt毒蛋白基因产生的Bt毒蛋白并无毒性,进入昆虫消化道被分解成多肽后产生毒性。2、青霉素是谤变后的高产青霉菌产生的,不是通过基因工程改造的工程菌产生的。3、动物基因工程的应用主要体现在提高动物生长速度、改善畜产品品质、用转基因动物生产药物等方面。 4、动物基因工程主要为了改善畜产品的品质,不是为了产生体型巨大的个体。5、乳腺生物反应器产量高、质量好、成本低、易提取,在高价值蛋白质的生产上比工厂化生产更具有优越性二。6、用基因工程的方法,使外源基因得以高效表达的菌类细胞株系一般称为“工程菌”。7、基因诊断是采用基因检测的方法来判断患者是否出现了基因异常或携带病原体。基因治疗指利用正常基因置换或弥补缺陷基因的治疗方法。8、基因工程与环境保护亲子鉴定:利用医学、生物学和遗传学的理论和技术,从子代和亲代的形态构造或生理机能方面的相似特点,分析遗传特征,判断父母与子女之间是否是亲生关系。使用国产制剂进行亲子鉴定鉴定亲子关系目前用得最多的是DNA分型鉴定。人的血液、毛发、唾液、口腔细胞及骨头等都可以用于亲子鉴定,十分方便。利用DNA进行亲子鉴定,只要作十几至几十个DNA位点作检测,如果全部一样,就可以确定亲子关系,如果有3个以上的位点不同,则可排除亲子关系,有一两个位点不同,则应考虑基因突变的可能,加做一些位点的检测进行辨别。DNA亲子鉴定,否定亲子关系的准确率几近100%,肯定亲子关系的准确率可达到99.99%。9、基因芯片的基本原理:就是最基本的DNA分子杂交,利用基因芯片检测某种基因时,先将待测样品制成荧光标记的DNA探针,让它与基因芯片上已知序列的DNA片段杂交,杂交信号经放大后输入计算机进行统计分析,这样就可以检测出样品DNA序列。用途:用来检测基因表达的变化、分析基因序列、寻找新的基因和新的药物分子。利用基因芯片,可以比较同一物种不同个体或物种之间,以及同一个体在不同生长发育阶段、正常和疾病状态下基因表达的差异,寻找和发现新的基因,研究基因的功能以及生物体在进化、发育、遗传等过程中的规律。DNA重组技术的基本工具:1、基因工程的概念:
2、基本工具:(1)“分子手术刀”——限制性核酸内切酶(限制酶)①来源:主要是从原核生物中分离纯化出来的。②功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。③结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。即&当限制性内切酶作用于特定的DNA时,把这段序列沿着特定的切点切开的这个过程分两种情况:a、沿着中轴线切口(即沿着DNA双链中对应的磷酸二酯键)切开,得到的就是两个平末端;b、在中轴线的两端切口切开,得到的就是两个黏性末端。例如:EcoRⅠ限制性内切酶就可以识别G/AATTC的DNA序列,然后在G和A间切开,得到的就是两个黏性末端(之间可以根据碱基互补配对原则重组)限制酶的切口不都是一长一短的,一长一短的叫黏性末端,一样长的叫平末端。“粘性末端”在高中教材中也作“黏性末端”。如图:(2)“分子缝合针”——DNA连接酶
&(3)“分子运输车”——载体①载体具备的条件:能在受体细胞中复制并稳定保存;具有一至多个限制酶切点,供外源DNA片段插入;具有标记基因,供重组DNA的鉴定和选择。②最常用的载体是质粒,它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA分子。③其它载体:噬菌体的衍生物、动植物病毒知识点拨:1、限制酶识别的序列的特点:呈现碱基互补对称,无论是奇数个碱基还是偶数个碱基,都可以找到一条中心轴线,如图,中轴线两侧的双链DNA上的碱基是反向对称重复排列的。如以中心线为轴,两侧碱基互补对称;以为轴,两侧碱基互补对称。2、获取目的基因和切割载体时使用同种限制酶,目的是产生相同的黏性末端。3、获取一个目的基因需限制酶剪切两次,共产生 4个黏性末端或平末端。 4、限制酶切割位点的选择必须保证标记基因的完整性,以便于检测。 基因工程的基本操作程序:1、目的基因的获取(1)目的基因是指: 编码蛋白质的结构基因。(2)获取方法:①从基因文库中获取;②人工合成(反转录法和化学合成法);③PCR技术扩增目的基因。2、基因表达载体的构建(1)目的:使目的基因在受体细胞中稳定存在,并且可以遗传至下一代,使目的基因能够表达和发挥作用。(2)组成:目的基因+启动子+终止子+标记基因。如图:①启动子:是一段有特殊结构的DNA片段,位于基因的首端,是RNA聚合酶识别和结合的部位,能驱动基因转录出mRNA,最终获得所需的蛋白质。②终止子:也是一段有特殊结构的DNA片段,位于基因的尾端。③标记基因的作用:是为了鉴定受体细胞中是否含有目的基因,从而将含有目的基因的细胞筛选出来。常用的标记基因是抗生素基因。(3)基因表达载体的构建过程:3、将目的基因导入受体细胞(1)转化的概念:是目的基因进入受体细胞内,并且在受体细胞内维持稳定和表达的过程。(2)常用的转化方法:
(3)重组细胞导入受体细胞后,筛选含有基因表达载体受体细胞的依据是标记基因是否表达。4、目的基因的检测和表达(1)首先要检测转基因生物的染色体DNA上是否插入了目的基因,方法是采用DNA分子杂交技术。(2)其次还要检测目的基因是否转录出mRNA,方法是用标记的目的基因作探针与mRNA杂交。(3)最后检测目的基因是否翻译成蛋白质,方法是从转基因生物中提取蛋白质,用相应的抗体进行抗原--抗体杂交。 (4)有时还需进行个体生物学水平的鉴定。如转基因抗虫植物是否出现抗虫性状。知识点拨:1、构建基因文库的目的为了在不知目的基因序列的情况下,便于获得所需的目的基因。 2、PCR技术:是一项在生物体外复制特定DNA片段的核酸合成技术。PCR扩增是获取目的基冈的一种非常有用的方法,也是进行分子鉴定和检测的一种很灵敏的方法。目的:通过指数式扩增获取大量的目的基因。 3、基因文库中不是直接保管相应基因,基因文库中的基因保存在受体菌中。 4、在基因工程的四个操作步骤中,只有第三步将目的基因导入受体细胞不需碱基互补配对,其余三个步骤都涉及碱基互补配对。5、原核生物繁殖快、多为单细胞、遗传物质相对较少,有利于目的基因的复制与表达,因此常用大肠杆菌等原核生物作为受俸细胞。 6、植物细胞的全能性较高,可经植物组织培养过程成为完整植物体,因此受体细胞可以是受精卵也可以是体细胞;动物基因工程中的受体细胞一般是受精卵。7、转化的实质是目的基因整合到受体细胞染色体基因组中,从而使受体生物获得了新的遗传特性的现象,从其变化的实质看,这种变异属于可遗传变异中的基因重组。 知识拓展:1、基因文库的构建:(1)概念①基因组文库:含有一种生物的全部基因。将含有某种生物不同基因的许多DNA片段,导入受体菌的群体中储存,各个受体菌分别含有这种生物的不同的基因,称为基因组文库。 ②cDNA文库:只包含了一种生物的部分基因。 (2)构建过程
2、人工合成目的基因(1)反转录法:(2)人工合成目的基因3、PCR技术扩增目的基因①原理:DNA双链复制②过程:第一步:加热至90~95℃DNA解链;第二步:冷却到55~60℃,引物结合到互补DNA链;第三步:加热至70~75℃,热稳定DNA聚合酶从引物起始互补链的合成。
发现相似题
与“绿色荧光蛋白基因(GFP)被发现以来,一直作为一个监测完整细胞和组..”考查相似的试题有:
81434889171087281071009872398576绿色荧光蛋白
日,瑞典皇家科学院把今年的诺贝尔化学奖授予了美国加州大学圣迭戈分校生物化学及化学系教授、美国国家科学院院士钱学森堂侄钱永健,美国哥伦比亚大学生物学教授马丁·沙尔菲,日本有机化学家兼海洋生物学家下村修,以表彰三人作为绿色荧光蛋白的发现者和推广者所取得的科学成就。
绿色荧光蛋白
  绿色萤光蛋白(green fluorescent
protein),简称GFP,这种蛋白质最早是由下村脩等人在1962年在一种学名Aequorea
victoria的水母中发现。其基因所产生的蛋白质,在蓝色波长范围的光线激发下,会发出绿色萤光。这个发光的过程中还需要冷光蛋白质Aequorin的帮助,且这个冷光蛋白质与钙离子(Ca+2)可产生交互作用。
  由水母Aequorea
victoria中发现的野生型绿色萤光蛋白,395nm和475nm分别是最大和次大的激发波长,它的发射波长的峰点是在509nm,在可见光绿光的范围下是较弱的位置。由海肾(sea
pansy)所得的绿色萤光蛋白,仅有在498nm有一个较高的激发峰点。
  在细胞生物学与分子生物学领域中,绿色萤光蛋白基因常被用作为一个报导基因(reporter
gene)。一些经修饰过的型式可作为生物探针,绿色萤光蛋白基因也可以克隆到脊椎动物(例如:兔子上进行表现,并拿来映证某种假设的实验方法。
  GFP的性质
  GFP荧光极其稳定,在激发光照射下,GFP抗光漂白(Photobleaching)能力比荧光素(fluorescein)强,特别在450~490nm蓝光波长下更稳定。
  GFP需要在氧化状态下产生荧光,强还原剂能使GFP转变为非荧光形式,但一旦重新暴露在空气或氧气中,GFP荧光便立即得到恢复。而一些弱还原剂并不影响GFP荧光。中度氧化剂对GFP荧光影响也不大,如生物材料的固定、脱水剂戊二酸或甲醛等。
  GFP融合蛋白的荧光灵敏度远比荧光素标记的荧光抗体高,抗光漂白能力强,因此更适用于定量测定与分析。但因为GFP不是酶,荧光信号没有酶学放大效果,因此GFP灵敏度可能低于某些酶类报告蛋白。
  由于GFP荧光是生物细胞的自主功能,荧光的产生不需要任何外源反应底物,因此GFP作为一种广泛应用的活体报告蛋白,其作用是任何其它酶类报告蛋白无法比拟的。
GFP在肿瘤发病机制研究中的应用
  GFP 是一个分子量较小的蛋白,易与其他一些目的基因形成融合蛋白且不影响自身的目的基因产物的空间构象和功能。GFP
与目的基因融合,将目的基因标记为绿色,即可定量分析目的基因的表达水平,显示其在肿瘤细胞内的表达位置和量的变化,为探讨该基因在肿瘤发生、发展中的作用及其分子机制提供便利条件。
  在肿瘤的形成过程中,增殖和凋亡是一对相互矛盾的统一体。若肿瘤细胞凋亡占优势,肿瘤组织将长期处于休眠状态或自行消亡。肿瘤细胞的凋亡受凋亡相关基因调控。用GFP转染肿瘤细胞凋亡相关基因,并与正常组织进行比较,则大致可判断此基因为抑制肿瘤细胞凋亡的基因;反之,为促进肿瘤细胞凋亡的基因。
  肿瘤细胞浸润是肿瘤细胞粘连、酶降解、移动和基质内增殖等一系列过程的表现,其根本原因在于肿瘤细胞内某些基因表达异常。利用GFP
的示踪特性,研究肿瘤细胞内某些基因异常表达与肿瘤细胞浸润的关系,即可揭示肿瘤细胞浸润的某些机制。
  1994年,华裔美国科学家钱永健(Roger Y
Tsien)开始改造GFP,有多项发现。世界上用的大多数是钱永健实验室改造后的变种,有的荧光更强,有的黄色、蓝色,有的可激活、可变色。到一些不常用做研究模式的生物体内找有颜色的蛋白成为一些人的爱好,现象正如当年在嗜热生物中找到以后应用广泛的PCR用多聚酶后的一波浪潮。不过真发现的有用东西并不很多。成功的例子有俄国科学院生物有机化学研究所Sergey
A. Lukyanov实验室从珊瑚里发现其他荧光蛋白,包括红色荧光蛋白。
  生物发光现象,下村修和约翰森以前就有人研究。萤火虫发荧光,是由荧光酶(luciferase)作为酶催化底物分子荧光素(luciferin),有化学反应如氧化,以后产生荧光。而蛋白质本身发光,无需底物,起源是下村修和约翰森的研究。
  下村修和约翰森用过几种实验动物,和本故事相关的是学名为Aequorea
victoria的水母。1962年,下村修和约翰森等在《细胞和比较生理学杂志》上报道,他们分离纯化了水母中发光蛋白水母素。据说下村修用水母提取发光蛋白时,有天下班要回家了,他把产物倒进水池里,临出门前关灯后,依依不舍地回头看了一眼水池,结果见水池闪闪发光。因为水池也接受养鱼缸的水,他怀疑是鱼缸成分影响水母素,不久他就确定钙离子增强水母素发光。1963年,他们在《科学》杂志报道钙和水母素发光的关系。其后Ridgway和Ashley
提出可以用水母素来检测钙浓度,创造了检测钙的新方法。钙离子是生物体内的重要信号分子,水母素成为第一个有空间分辨能力的钙检测方法,是目前仍用的方法之一。
  1955年Davenport和Nicol发现水母可以发绿光,但不知其因。在1962
年下村修和约翰森在那篇纯化水母素的文章中,有个注脚,说还发现了另一种蛋白,它在阳光下呈绿色、钨丝下呈黄色、紫外光下发强烈绿色。其后他们仔细研究了其发光特性。1974年,他们纯化到了这个蛋白,当时称绿色蛋白、以后称绿色荧光蛋白GFP。Morin和Hastings提出水母素和GFP之间可以发生能量转移。水母素在钙刺激下发光,其能量可转移到GFP,刺激GFP发光。这是物理化学中知道的荧光共振能量转移(FRET)在生物中的发现。
  下村修本人对GFP的应用前景不感兴趣,也没有意识到应用的重要性。他离开普林斯顿到 Woods
Hole海洋研究所后,同事普腊石(Douglas
Prasher)非常感兴趣发明生物示踪分子。1985年普腊石和日裔科学家Satoshi
Inouye独立根据蛋白质顺序拿到了水母素的基因(准确地说是cDNA)。1992年,普腊石拿到了GFP的基因。有了cDNA,一般生物学研究者就很好应用,比用蛋白质方便多了。
  普腊石1992年发表GFP的cDNA后,不做科学研究了。他申请美国国家科学基金时,评审者说没有蛋白质发光的先例,就是他找到了,也没什么价值。一气之下,他离开学术界去麻省空军国民卫队基地,给农业部动植物服务部工作。当时他如果花几美元,就可以做一个一般研究生都能做,但是非常漂亮的工作:将水母的GFP基因放到其他生物体内,比如细菌里,看到荧光,就完全证明GFP本身可以发光,无需其它底物或者辅助分子。
  将GFP表达到其它生物体这项工作,1994年由两个实验室独立进行:美国哥伦比亚大学做线虫的Marty
Chalfie实验室,和加州大学圣迭哥分校、Scripps海洋研究所的两位日裔科学家Inouye和Tsuji。
  水母素和GFP都有重要的应用。但水母素仍是荧光酶的一种,它需要荧光素。而GFP蛋白质本身发光,在原理上有重大突破。
  Chalfie的文章立即引起轰动,很多生物学研究者纷纷将GFP引入自己的系统。在一个新系统表达GFP就能在《自然》、《科学》上发表文章,其实不过是跟风性质,没有原创性。
  纵观整个过程,从1961年到1974年,下村修和约翰森的研究遥遥领先,而很少人注意。如果其他生化学家愿意,他们也可以得到水母素和GFP,技术并不特别难。在1974年以后,特别是八十年代后,后继的工作,很多研究生都很容易做。其中例外是钱永健实验室发现变种出现新颜色,并非显而易见。
首先发现绿色荧光蛋白的是生于1928年的下村修。下村修现年80岁,出生于日本京都府,1960年获得名古屋大学理学博士学位,曾先后在美国普林斯顿大学、波士顿大学和伍兹霍尔海洋生物实验所工作。他1962年从一种水母中发现了荧光蛋白,被誉为生物发光研究第一人。他1962年从生活在美国西海岸近海的一种水母身上分离出了绿色荧光蛋白。
  钱永健走出的可说是绿色荧光蛋白开发历程的“最后一步”,他在下村修与沙尔菲研究的基础上进一步搞清楚了绿色荧光蛋白特性。他改造绿色荧光蛋白,通过改变其氨基酸排序,造出能吸收、发出不同颜色光的荧光蛋白,其中包括蓝色、青色和黄色,并让它们发光更久、更强烈。世界上目前使用的荧光蛋白大多是钱永健实验室改造后的变种。钱永健1952年生于纽约,现为美国加州大学圣迭戈分校生物化学及化学系教授、美国国家科学院院士、国家医学院院士,2004年沃尔夫奖医学奖得主。主要贡献是利用水母发出绿光的化学物来追查实验室内进行的生物反应,他被认为是这方面的先驱。
  马丁·查尔菲1947年出生,在芝加哥长大,他1977年获得哈佛大学神经生物学博士学位,他自1982年以来任哥伦比亚大学生物学教授。他获奖的主要贡献在于向人们展示了绿色荧光蛋白作为发光的遗传标签的作用。
中国首例绿色荧光蛋白转基因克隆猪问世
曾培育出我国首例成体体细胞「克隆」东北民猪的东北农业大学教授刘忠华带领的课题组,日又成功培育出国内首例绿色荧光蛋白「转基因」克隆猪,这是世界上继美国、韩国、日本之后第四例绿色荧光蛋白转基因猪(见图)。
&&&&&&&&&&&&&&&&&&&&&&&&&
据悉,此次获得的转基因克隆猪,是研究人员先从一种特殊水母中提取绿色荧光蛋白基因,然后把该基因经过处理后转移到培养的猪胎儿成纤维细胞的基因组中,再把转基因体细胞的细胞核移植到成熟的去核猪卵母细胞中构建成转基因胚胎。转基因胚胎经过手术移植入受体母猪,经过114天的发育,最终获得绿色荧光蛋白转基因克隆猪。
绿色荧光蛋白基因是一种标记基因,该基因表达后产生的绿色荧光蛋白在紫外光的激发下可发出明亮的绿光,便于直观鉴定。绿色荧光蛋白转基因猪具有非常广泛的基础研究价值,例如提取绿色荧光蛋白转基因猪的骨髓、血液及其它不同组织样本并分离出其中的成体干细胞(也表达绿色荧光蛋白),就可以将此作为干细胞分化、增殖以及修补等再生医学研究结果的标示物。
东北农业大学副校长、畜牧专家包军介绍,绿色荧光蛋白转基因猪的出生,标志着我国在转基因克隆猪技术研究领域步入世界先进水平行列。这项技术为家猪的目标育种、人类疾病医疗模型猪的建立以及生产为人类器官移植提供器官的特殊家猪提供了可靠技术平台,从而为畜牧业发展和医学研究开辟了新的天地。
目前,在哈尔滨三元畜产实业有限公司种猪场还有2头怀有转基因胎儿的母猪待产,产期预计在2007年1月中旬。待产的母猪被植入的是抑肌基因,也就是去除了抑制肌肉生长的基因,让猪的肌肉生长不受抑制,可大大提高猪肉的生长速度,提高养殖的生产效率。
已投稿到:
以上网友发言只代表其个人观点,不代表新浪网的观点或立场。

我要回帖

更多关于 根尖周炎 的文章

 

随机推荐