与dna作用的沟区的物质dna的结构特点有什么特点

 上传我的文档
 下载
 收藏
该文档贡献者很忙,什么也没留下。
 下载此文档
正在努力加载中...
联萘二酰胺开链冠醚及稀土配合物的合成、表征和DNA手性荧光探针研究
下载积分:1500
内容提示:联萘二酰胺开链冠醚及稀土配合物的合成、表征和DNA手性荧光探针研究
文档格式:PDF|
浏览次数:7|
上传日期: 11:55:13|
文档星级:
全文阅读已结束,如果下载本文需要使用
 1500 积分
下载此文档
该用户还上传了这些文档
联萘二酰胺开链冠醚及稀土配合物的合成、表征和DNA手
官方公共微信扫二维码下载作业帮
拍照搜题,秒出答案,一键查看所有搜题记录
下载作业帮安装包
扫二维码下载作业帮
拍照搜题,秒出答案,一键查看所有搜题记录
列表说明DNA 和RNA在化学组成,分子结构和生物学功能方面的主要特点
性爱粉丝id侟
扫二维码下载作业帮
拍照搜题,秒出答案,一键查看所有搜题记录
RNA与DNA最重要的区别一是RNA只有一条链,二是它的碱基组成与DNA的不同,RNA没有碱基T(胸腺嘧啶),而有碱基U(尿嘧啶).所以导致他们有以下性质上的不同. 1.两性解离:DNA无,只有酸解离,碱基被屏蔽(在分子内部形成了H键).RNA有,有PI. 2.粘度大:DNA;RNA,粘度由分子长度/直径决定,DNA为线状分子,RNA为线团. 3.碱的作用:DNA耐碱RNA易被碱水解. 4.显色反应: 鉴别DNA和RNA+浓HCl RNA ------→ 绿色化合物 DNA ------→ 蓝紫色化合物苔黑酚 二苯胺啡啶溴红(荧光染料)和溴嘧啶都可对DNA染色,原理是卡在分子中,DNA的离心和电泳显色可用它们. DNA和RNA的鉴别染色 利用吖啶橙的变色特性可鉴别DNA和RNA.吖啶橙作为一种荧光染料已被用于染色固定,非固定细胞核酸,或作溶酶体的一种标记.观察死亡细胞荧光变色性变化以及区别分裂细胞和静止细胞群体.虽然测定DNA和RNA含量时较难获得好的重复性结果,但该方法已被许多实验室广泛采用. 5.溶解性:都溶于水而不溶于乙醇,因此,常用乙醇来沉淀溶液中的DNA和RNA.DNA溶于苯酚而RNA不溶,故可用苯酚来沉淀RNA. 6.紫外吸收:核酸的λm=260nm,碱基展开程度越大,紫外吸收就越厉害.当A=1时,DNA:50ug/ml,RNA和单链DNA:40ug/ml,寡核苷酸:20ug/ml.用A260/A280还可来表示核酸的纯度. 7.沉降速度:对于拓扑异构体(核苷酸数目相同的核酸),其沉降速度从达到小依次为:RNA ; 超螺旋DNA > 解链环状DNA ; 松弛环状DNA ; 线形DNA也就是在离心管中最上层是线形DNA,最下面是RNA. 8.电泳:核苷酸、核酸均可以进行电泳,泳动速度主要由分子大小来决定,因此,电泳是测定核酸分子量的好方法. 9.DNA分子量测定最直接的方法:用适当浓度的EB(溴嘧啶)染色DNA,可以将其他形式的DNA变成线形DNA,用电镜测出其长度,按B-DNA模型算出bp数,根据核苷酸的平均分子量就可计算出DNA的分子量. 聚合酶链反应(Polymerase Chain Reaction ,PCR)是80年代中期发展起来的体外核酸扩增技术.它具有特异、敏感、产率高、快速、简便、重复性好、易自动化等突出优点;能在一个试管内将所要研究 的目的基因或某一DNA片段于数小时内扩增至十万乃至百万倍,使肉眼能直接观察和判断;可从一根毛发、一滴血、甚至一个细胞中扩增出足量的DNA供分析研 究和检测鉴定.过去几天几星期才能做到的事情,用PCR几小时便可完成.PCR技术是生物医学领域中的一项革命性创举和里程碑. PCR技术简史 PCR的最早设想 核酸研究已有100多年的历史,本世纪60年代末、70年代初人们致力于研究基因的体外分离技术,Korana于1971年最早提出核酸体外扩增的设想:“经过DNA变性,与合适的引物杂交,用DNA聚合酶延伸引物,并不断重复该过程便可克隆tRNA基因”. PCR的实现 1985年美国PE-Cetus公司人类遗传研究室的Mullis等发明了具有划时代意义的聚合酶链反应.其原理类似于DNA的体内复制,只是在试管中给 DNA的体外合成提供以致一种合适的条件---摸板DNA,寡核苷酸引物,DNA聚合酶,合适的缓冲体系,DNA变性、复性及延伸的温度与时间. PCR的改进与完善 Mullis最初使用的DNA聚合酶是大肠杆菌DNA聚合酶I的 Klenow片段,其缺点是:①Klenow酶不耐高温,90℃会变性失活,每次循环都要重新加.②引物链延伸反应在37℃下进行,容易发生模板和引物之 间的碱基错配,其PCR产物特异性较差,合成的DNA片段不均一.此种以Klenow酶催化的PCR技术虽较传统的基因扩增具备许多突出的优点,但由于 Klenow酶不耐热,在DNA模板进行热变性时,会导致此酶钝化,每加入一次酶只能完成一个扩增反应周期,给PCR技术操作程序添了不少困难.这使得 PCR技术在一段时间内没能引起生物医学界的足够重视.1988年初,Keohanog改用T4 DNA聚合酶进行PCR,其扩增的DNA片段很均一,真实性也较高,只有所期望的一种DNA片段.但每循环一次,仍需加入新酶.1988年Saiki 等从温泉中分离的一株水生嗜热杆菌(thermus aquaticus) 中提取到一种耐热DNA聚合酶.此酶具有以下特点:①耐高温,在70℃下反应2h后其残留活性大于原来的90%,在93℃下反应2h后其残留活性是原来的 60%,在95℃下反应2h后其残留活性是原来的40%.②在热变性时不会被钝化,不必在每次扩增反应后再加新酶.③大大提高了扩增片段特异性和扩增效 率,增加了扩增长度(2.0Kb).由于提高了扩增的特异性和效率,因而其灵敏性也大大提高.为与大肠杆菌多聚酶I Klenow片段区别,将此酶命名为Taq DNA多聚酶(Taq DNA Polymerase).此酶的发现使PCR广泛的被应用. PCR技术基本原理 PCR技术的基本原理 类似于DNA的 天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物.PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加 热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引 物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合 物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板.每完成一个循环需 2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍.到达平台期(Plateau)所需循环次数取决于样品中模板的拷贝. PCR的反应动力学 PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升.反应最终的DNA 扩增量可用Y=(1+X)n计算.Y代表DNA片段扩增后的拷贝数,X表示平(Y)均每次的扩增效率,n代表循环次数.平均扩增效率的理论值为100%, 但在实际反应中平均效率达不到理论值.反应初期,靶序列DNA片段的增加呈指数形式,随着PCR产物的逐渐积累,被扩增的DNA片段不再呈指数增加,而进 入线性增长期或静止期,即出现“停滞效应”,这种效应称平台期数、PCR扩增效率及DNA聚合酶PCR的种类和活性及非特异性产物的竟争等因素.大多数情 况下,平台期的到来是不可避免的. PCR扩增产物 可分为长产物片段和短产物片段两部分.短产物片段的长度严格地限定在两个引物链5’端之间,是需要扩增的特定片段.短产物片段和长产物片段是由于引物所 结合的模板不一样而形成的,以一个原始模板为例,在第一个反应周期中,以两条互补的DNA为模板,引物是从3’端开始延伸,其5’端是固定的,3’端则没 有固定的止点,长短不一,这就是“长产物片段”.进入第二周期后,引物除与原始模板结合外,还要同新合成的链(即“长产物片段”)结合.引物在与新链结合 时,由于新链模板的5’端序列是固定的,这就等于这次延伸的片段3’端被固定了止点,保证了新片段的起点和止点都限定于引物扩增序列以内、形成长短一致的 “短产物片段”.不难看出“短产物片段”是按指数倍数增加,而“长产物片段”则以算术倍数增加,几乎可以忽略不计, 这使得PCR的反应产物不需要再纯化,就能保证足够纯DNA片段供分析与检测用. PCR反应体系与反应条件 标准的PCR反应体系: 10×扩增缓冲液 10ul 4种dNTP混合物 各200umol/L 引物 各10~100pmol 模板DNA 0.1~2ug Taq DNA聚合酶 2.5u Mg2+ 1.5mmol/L 加双或三蒸水至 100ul PCR反应五要素: 参加PCR反应的物质主要有五种即引物、酶、dNTP、模板和Mg2+ 引物: 引物是PCR特异性反应的关键,PCR 产物的特异性取决于引物与模板DNA互补的程度.理论上,只要知道任何一段模板DNA序列,就能按其设计互补的寡核苷酸链做引物,利用PCR就可将模板DNA在体外大量扩增. 设计引物应遵循以下原则: ①引物长度: 15-30bp,常用为20bp左右. ②引物扩增跨度: 以200-500bp为宜,特定条件下可扩增长至10kb的片段. ③引物碱基:G+C含量以40-60%为宜,G+C太少扩增效果不佳,G+C过多易出现非特异条带.ATGC最好随机分布,避免5个以上的嘌呤或嘧啶核苷酸的成串排列. ④避免引物内部出现二级结构,避免两条引物间互补,特别是3’端的互补,否则会形成引物二聚体,产生非特异的扩增条带. ⑤引物3’端的碱基,特别是最末及倒数第二个碱基,应严格要求配对,以避免因末端碱基不配对而导致PCR失败. ⑥引物中有或能加上合适的酶切位点,被扩增的靶序列最好有适宜的酶切位点,这对酶切分析或分子克隆很有好处. ⑦引物的特异性:引物应与核酸序列数据库的其它序列无明显同源性. 引物量: 每条引物的浓度0.1~1umol或10~100pmol,以最低引物量产生所需要的结果为好,引物浓度偏高会引起错配和非特异性扩增,且可增加引物之间形成二聚体的机会. 酶及其浓度 目前有两种Taq DNA聚合酶供应, 一种是从栖热水生杆菌中提纯的天然酶,另一种为大肠菌合成的基因工程酶.催化一典型的PCR反应约需酶量2.5U(指总反应体积为100ul时),浓度过高可引起非特异性扩增,浓度过低则合成产物量减少. dNTP的质量与浓度 dNTP的质量与浓度和PCR扩增效率有密切关系,dNTP粉呈颗粒状,如保存不当易变性失去生物学活性.dNTP溶液呈酸性,使用时应配成高浓度后,以1M NaOH或1M Tris.HCL的缓冲液将其PH调节到7.0~7.5,小量分装, -20℃冰冻保存.多次冻融会使dNTP降解.在PCR反应中,dNTP应为50~200umol/L,尤其是注意4种dNTP的浓度要相等( 等摩尔配制),如其中任何一种浓度不同于其它几种时(偏高或偏低),就会引起错配.浓度过低又会降低PCR产物的产量.dNTP能与Mg2+结合,使游离的Mg2+浓度降低. 模板(靶基因)核酸 模板核酸的量与纯化程度,是PCR成败与否的关键环节之一,传统的DNA纯化方法通常采用SDS和蛋白酶K来消化处理标本. SDS的主要功能是: 溶解细胞膜上的脂类与蛋白质,因而溶解膜蛋白而破坏细胞膜,并解离细胞中的核蛋白,SDS 还能与蛋白质结合而沉淀;蛋白酶K能水解消化蛋白质,特别是与DNA结合的组蛋白,再用有机溶剂酚与氯仿抽提掉蛋白质和其它细胞组份,用乙醇或异丙醇沉淀 核酸.提取的核酸即可作为模板用于PCR反应.一般临床检测标本,可采用快速简便的方法溶解细胞,裂解病原体,消化除去染色体的蛋白质使靶基因游离,直接 用于PCR扩增.RNA模板提取一般采用异硫氰酸胍或蛋白酶K法,要防止RNase降解RNA. Mg2+浓度 Mg2+对PCR扩增的特异性和产量有显著的影响,在一般的PCR反应中,各种dNTP浓度为200umol/L时,Mg2+浓度为1.5~2.0mmol/L为宜.Mg2+浓度过高,反应特异性降低,出现非特异扩增,浓度过低会降低Taq DNA聚合酶的活性,使反应产物减少. PCR反应条件的选择 PCR反应条件为温度、时间和循环次数. 温度与时间的设置: 基于PCR原理三步骤而设置变性-退火-延伸三个温度点.在标准反应中采用三温度点法,双链DNA在90~95℃变性,再迅速冷却至40 ~60℃,引物退火并结合到靶序列上,然后快速升温至70~75℃,在Taq DNA 聚合酶的作用下,使引物链沿模板延伸.对于较短靶基因(长度为100~300bp时)可采用二温度点法, 除变性温度外、退火与延伸温度可合二为一,一般采用94℃变性,65℃左右退火与延伸(此温度Taq DNA酶仍有较高的催化活性). ①变性温度与时间:变性温度低,解链不完全是导致PCR失败的最主要原因.一般情况下,93℃~94℃lmin足以使模板DNA变性,若低于93℃则 需延长时间,但温度不能过高,因为高温环境对酶的活性有影响.此步若不能使靶基因模板或PCR产物完全变性,就会导致PCR失败. ②退火(复性)温度与时间:退火温度是影响PCR特异性的较重要因素.变性后温度快速冷却至40℃~60℃,可使引物和模板发生结合.由于模板DNA 比引物复杂得多,引物和模板之间的碰撞结合机会远远高于模板互补链之间的碰撞.退火温度与时间,取决于引物的长度、碱基组成及其浓度,还有靶基序列的长 度.对于20个核苷酸,G+C含量约50%的引物,55℃为选择最适退火温度的起点较为理想.引物的复性温度可通过以下公式帮助选择合适的温度: Tm值(解链温度)=4(G+C)+2(A+T) 复性温度=Tm值-(5~10℃) 在Tm值允许范围内, 选择较高的复性温度可大大减少引物和模板间的非特异性结合,提高PCR反应的特异性.复性时间一般为30~60sec,足以使引物与模板之间完全结合. ③延伸温度与时间:Taq DNA聚合酶的生物学活性: 70~80℃ 150核苷酸/S/酶分子 70℃ 60核苷酸/S/酶分子 55℃ 24核苷酸/S/酶分子 高于90℃时, DNA合成几乎不能进行. PCR反应的延伸温度一般选择在70~75℃之间,常用温度为72℃,过高的延伸温度不利于引物和模板的结合.PCR延伸反应的时间,可根据待扩增片段的长度而定,一般1Kb以内的DNA片段,延伸时间1min是足够 的.3~4kb的靶序列需3~4min;扩增10Kb需延伸至15min.延伸进间过长会导致非特异性扩增带的出现.对低浓度模板的扩增,延伸时间要稍长些. 循环次数 循环次数决定PCR扩增程度.PCR循环次数主要取决于模板DNA的浓度.一般的循环次数选在30~40次之间,循环次数越多,非特异性产物的量亦随之增多. PCR反应特点 特异性强 PCR反应的特异性决定因素为: ①引物与模板DNA特异正确的结合; ②碱基配对原则; ③Taq DNA聚合酶合成反应的忠实性; ④靶基因的特异性与保守性. 其中引物与模板的正确结合是关键.引物与模板的结合及引物链的延伸是遵循碱基配对原则的.聚合酶合成反应的忠实性及Taq DNA聚合酶耐高温性,使反应中模板与引物的结合(复性)可以在较高的温度下进行,结合的特异性大大增加,被扩增的靶基因片段也就能保持很高的正确度.再通过选择特异性和保守性高的靶基因区,其特异性程度就更高. 灵敏度高 PCR产物的生成量是以指数方式增加的,能将皮克(pg=10-12g)量级的起始待测模板扩增到微克(ug=10-6g)水平.能从100万个细胞中检出一个靶细胞;在病毒的检测中,PCR的灵敏度可达3个RFU(空斑形成单位);在细菌学中最小检出率为3个细菌. 简便、快速 PCR反应用耐高温的Taq DNA聚合酶,一次性地将反应液加好后,即在DNA扩增液和水浴锅上进行变性-退火-延伸反应,一般在2~4 小时完成扩增反应.扩增产物一般用电泳分析,不一定要用同位素,无放射性污染、易推广. 对标本的纯度要求低 不需要分离病毒或细菌及培养细胞,DNA 粗制品及总RNA均可作为扩增模板.可直接用临床标本如血液、体腔液、洗嗽液、毛发、细胞、活组织等粗制的DNA扩增检测. PCR扩增产物分析 PCR产物是否为特异性扩增 ,其结果是否准确可靠,必须对其进行严格的分析与鉴定,才能得出正确的结论.PCR产物的分析,可依据研究对象和目的不同而采用不同的分析方法. 凝胶电泳分析:PCR产物电泳,EB溴乙锭染色紫外仪下观察,初步判断产物的特异性.PCR产物片段的大小应与预计的一致,特别是多重PCR,应用多对引物,其产物片断都应符合预讦的大小,这是起码条件. 琼脂糖凝胶电泳: 通常应用1~2%的琼脂糖凝胶,供检测用. 聚丙烯酰胺凝胶电泳:6~10%聚丙烯酰胺凝胶电泳分离效果比琼脂糖好,条带比较集中,可用于科研及检测分析. 酶切分析:根据PCR产物中限制性内切酶的位点,用相应的酶切、电泳分离后,获得符合理论的片段,此法既能进行产物的鉴定,又能对靶基因分型,还能进行变异性研究. 分子杂交:分子杂交是检测PCR产物特异性的有力证据,也是检测PCR 产物碱基突变的有效方法. Southern印迹杂交: 在两引物之间另合成一条寡核苷酸链(内部寡核苷酸)标记后做探针,与PCR产物杂交.此法既可作特异性鉴定,又可以提高检测PCR产物的灵敏度,还可知其分子量及条带形状,主要用于科研. 斑点杂交: 将PCR产物点在硝酸纤维素膜或尼膜薄膜上,再用内部寡核苷酸探针杂交,观察有无着色斑点,主要用于PCR产物特异性鉴定及变异分析. DNA是双螺旋结构,RNA是单螺旋结构的. 具体解释如下: RNA指 ribonucleic acid 核糖核酸 核糖核苷酸聚合而成的没有分支的长链.分子量比DNA小,但在大多数细胞中比DNA丰富.RNA主要有3类,即信使RNA(mRNA),核糖体RNA(rRNA)和转移RNA(tRNA).这3类RNA分子都是单链,但具有不同的分子量、结构和功能. 在RNA病毒中,RNA是遗传物质,植物病毒总是含RNA.近些年在植物中陆续发现一些比病毒还小得多的浸染性致病因子,叫做类病毒.类病毒是不含蛋白质的闭环单链RNA分子,此外,真核细胞中还有两类RNA,即不均一核RNA(hnRNA)和小核RNA(snRNA).hnRNA是mRNA的前体;snRNA参与hnRNA的剪接(一种加工过程).自1965年酵母丙氨酸tRNA的碱基序列确定以后,RNA序列测定方法不断得到改进.目前除多种tRNA、5SrRNA、5.8SrRNA等较小的RNA外,尚有一些病毒RNA、mRNA及较大RNA的一级结构测定已完成,如噬菌体MS2RNA含3569个核苷酸. DNA 指deoxyribonucleic acid 脱氧核糖核酸(染色体和基因的组成部分) 脱氧核苷酸的高聚物,是染色体的主要成分.遗传信息的绝大部分贮存在DNA分子中. 分布和功能 原核细胞的染色体是一个长DNA分子.真核细胞核中有不止一个染色体,每个染色体也只含一个DNA分子.不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起.DNA分子的功能是贮存决定物种的所有蛋白质和RNA结构的全部遗传信息;策划生物有次序地合成细胞和组织组分的时间和空间;确定生物生命周期自始至终的活性和确定生物的个性.除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中.DNA病毒的遗传物质也是DNA. 结构: DNA是由许多脱氧核苷酸残基按一定顺序彼此用3’,5’-磷酸二酯键相连构成的长链.大多 数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌噬菌体φX174、G4、M13等.有的DNA为环形,有的DNA为线形.主要含有腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶4种碱基.在某些类型的DNA中,5-甲基胞嘧啶可在一定限度内取代胞嘧啶,其中小麦胚DNA的5-甲基胞嘧啶特别丰富,可达6摩尔%.在某些噬菌体中,5-羟甲基胞嘧啶取代了胞嘧啶.40年代后期,查加夫(E.Chargaff)发现不同物种DNA的碱基组成不同,但其中的腺嘌呤数等于其胸腺嘧啶数(A=T),鸟嘌呤数等于胞嘧啶数(G=C),因而嘌呤数之和等于嘧啶数之和.一般用几个层次描绘DNA的结构. 一级结构 DNA的一级结构即是其碱基序列.基因就是DNA的一个片段,基因的遗传信息贮存在其碱基序列中.1975年美国的吉尔伯特(W.Gilbert)和英国的桑格(F.Sanger)分别创立了DNA一级结构的快速测定方法,他们为此共获1980年度诺贝尔化学奖.自那时以后,测定方法又不断得到改进,已有不少DNA的一级结构已确立.如人线粒体环DNA含有16569个碱基对,λ噬菌体DNA含有48502个碱基对,水稻叶绿体基因组含134525个碱基对,烟草叶绿体基因组含155844个碱基对等.现在美国已计划在10至15年内将人类DNA分子中全部约30亿个核苷酸对序列测定出来. 二级结构 1953年,沃森(Watson)和克里克(Crick)提出DNA纤维的基本结构是双螺旋结构,后来这个模型得到科学家们的公认,并用以解释复制、转录等重要的生命过程.经深入研究,发现因湿度和碱基序列等条件不同,DNA双螺旋可有多种类型,主要分成A、B和Z3大类,其主要参数差别如下表. 一般认为,B构型最接近细胞中的DNA构象,它与双螺旋模型非常相似.A-DNA与RNA分子中的双螺旋区以及转录时形成的DNA-RNA杂交分子构象接近.Z-DNA以核苷酸二聚体为单元左向缠绕,其主链呈锯齿(Z)形,故名.这种构型适合多核苷酸链的嘌呤嘧啶交替区.1989年,美国科学家用扫描隧道电镜法直接观察到双螺旋DNA.
为您推荐:
其他类似问题
这种基础性的概念辨析问题就不要在网上查了,直接问老师或同学。
C/H/N/O/S/P
这种问题一般去贴吧问..百度化学贴吧
扫描下载二维码记录和传递遗传信息
细胞生物学、遗传学、分子生物学
稳定性、决定性状发育、可变性
1909年丹麦学者W.L.约翰森
基因(Gene, factor)基因(Gene,Mendelian factor):是遗传变异主要物质。基因支持着生命的基本构造和性能。储存着种族、血型、性状、发育、凋亡等全部信息。生物体的生、老、病、死等一切的生命现象都与基因有关。它是决定生命健康的内在因素。因此,基因具有双重属性,即物质性和信息性。 现代遗传学认为,基因是DNA分子上具有遗传效应的特定核苷酸序列的总称,是具有遗传效应的DNA分子片段。基因位于上,并在染色体上呈线性排列。基因不仅可以通过复制把遗传信息传递给下一代,还可以使遗传信息得到表达,也就是使遗传信息以一定的方式反映到蛋白质的分子结构上,从而使后代表现出与亲代相似的性状。一个基因要有正常的生理机能,它的几个正常组成部分一定要位于相继邻接的位置上,也就是说核苷酸要排成一定的次序,才能决定一种蛋白质的分子结构。假使几个正常组成部分分处于两个染色体上,理论上就是核苷酸的种类和排列改变了,这样就失去正常的生理机能。所以,基因不仅是一个遗传物质在上下代之间传递的基本单位,也是一个功能上的独立单位。
英文简述/基因
Ageneisasetofsegmentsofnucleicacidthatcontainsthe&information&necessary&to&produce&a&functional&RNA&product&in&a&controlled&manner.&They&contain&regulatory&regions&dictating&under&what&conditions&this&product&is&made,&transcribed&regions&dictating&the&sequence&of&the&RNA&product,&and/or&other&functional&sequence&regions.&The&physical&development&and&phenotype&of&organisms&can&be&thought&of&as&a&product&of&genes&interacting&with&each&other&and&with&the&environment,and&genes&can&be&considered&as&units&of&inheritance.特点基因有两个特点:一是能忠实地复制自己,以保持生物的基本特征;二是基因能够“突变”,突变大绝大多数会导致,另外的一小部分是非致病突变。非致病突变给自然选择带来了原始材料,使可以在自然选择中被选择出最适合自然的个体。
基因概念的提出基因——遗传的密码遗传学的奠基人人(Gregor Johann Mendel 1822年—1884年),在布尔诺(Brno,德Brünn,现属捷克)的奥古斯丁教派修道院的菜园里,挥洒了8年的汗水,于1865年2月在奥地利自然科学学会会议上报告了自己植物杂交研究结果,第二年在奥地利自然科学学会年刊上发表了著名的《植物杂交试验》的论文,发现了的两个基本规律——分离律和自由组合规律。文中指出,生物每一个性状都是通过遗传因子来传递的,遗传因子是一些独立的遗传单位。这样把可观察的遗传性状和控制它的内在的遗传因子区分开来了,遗传因子作为基因的雏形名词诞生了。基因的存在最早是由他在19世纪推断出来的,并不是观察的结果。在达尔文发表后不久,他试图通过对豌豆进行试验来对此解释该理论。但是直到19世纪末他的研究才被人们所重视。虽然孟德尔还不知道这种物质是以怎样的方式存在,也不知道它的结构是怎样的,但孟德尔“”的提出毕竟为现代基因概念的产生奠定了基础。 萨顿和两人注意到在杂交试验中遗传因子的行为与减数分裂和受精中的行为非常吻合,他们作出“遗传因子位于染色体上”的“萨顿—鲍维里假想”:他们根据各自的研究,认为孟德尔的“遗传因子”与配子形成和受精过程中的染色体传递行为具有平行性,并提出了遗传的说,认为孟德尔的遗传因子位于染色体上,即承认染色体是遗传物质的载体,第一次把遗传物质和染色体联系起来。这种假想可以很好地解释孟德尔的两大规律,在以后的科学实验中也得到了证实。1909年丹麦遗传学家约翰逊(W.Johansen )在一书中提出“基因”概念,以此来替代孟德尔假定的“遗传因子”。从此,“基因”一词一直伴随着遗传学发展至今。基因一词来自希腊语,意思为“生”。约翰逊还提出了“基因型”与“表现型”这两个含义不同的术语,初步阐明了基因与性状的关系。不过此时的基因仍然是一个未经证实的,仅靠逻辑推理得出的概念。基因概念的进一步发展 在一项的研究中,美国格莱斯顿病毒学与免疫学研究所的Warner&C.&Greene与同事证明,基因Rfv3就是基因Apobec3(一个带有抗逆转录病毒活性的先天免疫基因)。70年代后,基因的概念随着多学科渗透和实验手段日新月异又有突飞猛进的发展,主要有以下几个方面:1、基因具重叠性。1977年桑格(F.&Sanger)领导的研究小组,根据大量研究事实绘制了共含有5375个核苷酸的ΦX174噬菌体DNA碱基顺序图,第一次揭示了遗传的一种经济而巧妙的编排——B和E基因核苷酸顺序分别与A和D基因的核苷酸顺序的一部分互相重叠。当然它们各有一套读码结构,且基因末端密码也有重叠现象(A基因终止密码子TGA和C基因起始密码子ATG重叠2个核苷酸;D基因的终止密码子TAA与J基因起始密码子ATG互相重叠1个核苷酸,顺序为TAATG)。2、内含子和外显子。人们在研究小鸡卵清蛋白基因时发现其转录形成的mRNA只有该基因长度的1/4,其原因是基因中一些间隔序列的转录物在RNA成熟过程中被切除了。这些间隔序列叫内含子,基因中另一些被转录形成RNA的序列叫外显子。小鸡的卵清蛋白基因中至少含7个内含子。因而从基因转录效果看,基因由外显子和内含子构成。 3、和奢侈基因。具有相同遗传信息的同一个体细胞间其所利用的基因并不相同,有的基因活动是维持细胞基本代谢所必须的,而有的基因则在一些分化细胞中活动,这正是细胞分化、生物发育的基础。前者称为管家基因,而后者被称为奢侈基因。4、基因的游动性。早在20世纪40年代美国遗传学家麦克林托克(B.McClintock)在玉米研究中发现“转座因子”,直至1980年夏皮罗(J.Shapiro)等人证实了可移位的遗传基因存在,说明某些基因具有游动性。为此,这位“玉米夫人”荣获了1983年度诺贝尔奖。 所有这些成果无疑给基因概念中注入鲜活科学的内容,帮助人们揭开层层面纱去更加全面了解基因的真面目。时代在发展,科学在进步,基因概念的深入发展,必将对人类的文明进步产生强大的推动作用。
基因分类/基因
基因中编码RNA或蛋白质的碱基序列。
(1)原核生物结构基因:连续的,RNA合成不需要剪接加工;
(2)真核生物结构基因:由外显子(编码序列)和内含子(非编码序列)两部分组成。
非结构基因
结构基因两侧的一段不编码的DNA片段(即侧翼序列),参与基因表达调控。
(1)顺式作用元件:能影响基因表达,但不编码RNA和蛋白质的DNA序列;
其中包括:
启动子:RNA聚合酶特异性识别结合和启动转录的DNA序列。有方向性,位于转录起始位点上游。
上游启动子元件:TATA盒上游的一些特定DNA序列,反式作用因子可与这些元件结合,调控基因的转录效率。
反应元件:与被激活的信息分子受体结合,并能调控基因表达的特异DNA序列。
增强子:与反式作用因子结合,增强转录活性,在基因任意位置都有效,无方向性。
沉默子:基因表达负调控元件,与反式作用因子结合,抑制转录活性。
Poly(A)加尾信号:结构基因末端保守的AATAAA顺序及下游GT或T富含区,被多聚腺苷酸化特异因子识别,在mRNA&3′端加约200个A。
(2)反式作用因子:能识别和结合特定的顺式作用元件,并影响基因转录的一类蛋白质或RNA。
遗传物质/基因
关于遗传物质基础,科学家早就有所臆测。1864年英国哲学家曾提出“生理单位”,1868年将其称为“微芽”,1884年瑞士植物学家称之为“异胞质”,1889年荷兰学者称为“泛生子”。1883年称之为“种质”,并指明中的便是种质,认为种质是遗传的,体质不遗传,种质影响体质,而体质不影响种质。这在理论上为重新发现和广为人们接受的铺平了道路。 证明遗传物质是DNA的实验1928年英国细菌学家Frcdrick&Griffith利用肺类双球菌(Streptococcus&pneumoniae&)的光滑型(有荚膜,毒性强,可引起动物发生肺炎,简称S型)和粗糙型(无荚膜,不引起疾病,简称R型)分别给小鼠注射,S型使小鼠死亡,R型不使小鼠致死;若将S型加热杀死再注入小鼠体内,小鼠不死;若将加热杀死后的S型与R型混合,并给小鼠注入,则小鼠死亡并在小鼠体内发现S型。他们的结论是:可能是死细菌中的某一成分(转化源,transforming&principle)将无致病能力的细菌转化为病原细菌。1944年,美O.T.&Avery等为了寻找导致细菌转化的原因,他们发现从S&型肺炎球菌中提取的DNA与R型肺炎球菌混合后,能使某些R型菌转化为S型菌,且转化率与DNA纯度呈正相关,若将DNA预先用DNA酶降解,转化就不发生。结论是:S型菌的DNA将其遗传特性传给了R型菌,DNA就是遗传物质。从此核酸是遗传物质的重要地位才被确立,人们把对遗传物质的注意力从蛋白质移到了核酸上。 T2同位素标记感染实验1952年美国冷泉港卡内基遗传学实验室的Hershey及其学生Chase利用噬菌体同位素标记感染实验,进一步证明了DNA是遗传物质。他们将噬菌体外壳的蛋白质用35S标记,核酸用32P标记,结果进入宿主细胞能复制的是32P标记的核酸,35S蛋白质外壳留在宿主细胞的外面。 1956年德国科学家Fraenkel-Conrot将烟草花叶病病毒的和RNA分别提取出来,分别涂抹在健康的烟草叶子上,结果只有涂抹RNA的叶片的病,而涂抹蛋白质组分的叶片不得病。这就证明在不具有DNA的病毒中,RNA是遗传物质。
结构与功能/基因
DNA示意图关于基因的本质确定后,人们又把研究视线转移到基因传递遗传信息的过程上。在20世纪50年代初人们已懂得基因与蛋白质间似乎存在着相应的联系,但基因中信息怎样传递到上这一基因功能的关键课题在20世纪60年代至20世纪70年代才得以解决。从1961年开始,尼伦伯格(M.W. Nirenberg)和科拉纳(H.G. Khorana)等人逐步搞清了基因以核苷酸三联体为一组编码氨基酸,并在1967年破译了全部64个遗传密码,这样把核酸密码和蛋白质合成联系起来。然后,沃森和克里克等人提出的“中心法则”更加明确地揭示了生命活动的基本过程。1970年特明(H.M. Temin)以在病毒内发现这一成就进一步发展和完善了“中心法则”,至此,遗传信息传递的过程已较清晰地展示在人们的眼前。过去人们对基因的功能理解是单一的即作为蛋白质合成的模板。但是1961年法国雅各布(F. Jacob)和莫诺(J.L. Monod)的研究成果,又大大扩大了人们关于基因功能的视野。他们在研究大肠杆菌乳糖代谢的调节机制中发现了有些基因不起合成蛋白质,只起调节或操纵作用,提出了。从此根据基因功能把基因分为结构基因、调节基因和操纵基因。结构基因和调控基因根据操纵子学说,并不是所有的基因都能为肽链进行编码。于是便把能为多肽链编码的基因称为结构基因,包括编码结构蛋白和酶蛋白的基因,也包括编码阻遏蛋白或激活蛋白的调节基因。有些基因只能转录而不能翻译,如tRNA基因和rRNA基因。还有些DNA区段,其本身并不进行转录,但对其邻近的结构基因的转录起控制作用,被称为启动基因和操纵基因。启动基因、操纵基因与其控制下的一系列结构基因组成一个功能单位叫做操纵子(operon)。就其功能而言,调节基因、操纵基因和启动基因都属于调控基因。这些基因的发现,大大拓宽了人们对基因功能及相互关系的认识。断裂基因20世纪70年代中期,法国生物化学家查姆帮(Chamobon)??发现,细胞内的结构基因并非全部由编码序列组成,而是在编码序列中间插入无的碱基序列,这类基因被称为间隔或断裂基因。这一发现于1977年被英国的查弗里斯和的弗兰威尔在研究兔β-球蛋白结构时所证实。1928年,生化学家吉尔伯特(Gilbert)提出基因是一个转录单位的设想,他认为基因是一个嵌合体,包含两个区段:一个区段由遗传密码组成,将被表达,称为“外显子”;一个区段由非遗传密码组成,将在mRNA中被删除,称为“内含子”。近年来的研究发现,原核生物的基因一般是连续的,在一个基因的内部没有非遗传密码的序列(即不含“内含子”),而真核生物的绝大多数基因都是不连续的断裂基因。断裂基因的表达程序是:整个基因先转录成一条长RNA前体,其中的非编码序列被一种称为“剪接”的酶切除,两端再相互连接成一条连续的密码顺序,以形成成熟的mRNA。DNA分子断裂基因的存在为基因功能的发展赋予了更大的潜力。重叠基因长期以来,人们一直认为在同一段DNA序列内是不可能存在重叠的读码结构的。但是,1977年,维纳(Weiner)在研究Q0的基因结构时,首先发现了基因的重叠现象。1978年,费尔(Feir)和桑戈尔(Sangor)在研究分析φX174噬菌体的核苷酸序列时,也发现由5375个核苷酸组成的单链DNA所包含的10个基因中有几个基因具有不同程度的重叠,但是这些重叠的基因具有不同的读码框架。以后在噬菌体G4、MS2和SV40中都发现了重叠基因。基因的重叠性使有限的DNA序列包含了更多的遗传信息,是生物对它的遗传物质经济而合理的利用。假基因1977年,G·Jacp在对非洲爪赡簇的研究后提出了假基因的概念,这是一种核苷酸序列同其相应的正常功能基因基本相同,但却不能合成出功能的失活基因。假基因的发现是真核生物应用重组DNA技术和序列分析的结果。现已在大多数真核生物中发现了假基因,如Hb的假基因、干扰素、组蛋白、α球蛋白和β球蛋白、肌动蛋白及人的rRNA和tRNA基因均含有假基因。由于假基因不工作或无效工作,故有人认为假基因,相当人的,或作为后补基因。移动基因1950年,美国遗传学家麦克林托卡在玉米染色体组中首先发现移动基因。她发现染色体上有一种称为Ds的控制基因会改变位置,同时引起断裂,使其离开或插入部位邻近的基因失活或恢复恬性,从而导致玉米籽粒性状改变。这一研究当时并没有引起重视。20世纪60年代未,英国生物化学家夏皮罗和前西德化学家西特尔分别在细菌中发现一类称为的可移动位置的遗传因子,20世纪70年代早期又发现质粒的某些抗药性可移动的基因,到20世纪80年代已发现这类基因至少有20种。20世纪90年代之前,科学家终于用实验证明了麦克林托卡的观点,移动基因不仅能在个体的染色体组内移动,并能在个体间甚至种间移动。现已了解到真核细胞中普遍存在移动基因。基因移动性的发现不仅打破了遗传的恒定论,而且对于认识肿瘤基因的形成和表达,以及生物演化中信息量的扩大等研究工作也将提供新的启示和线索。
人类基因组研究/基因
人类只有一个,大约有3万个基因。人类基因组计划是美国科学家于1985年率先提出的,旨在阐明人类基因组30亿个碱基对的序列,发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息,使人类第一次在分子水平上全面地认识自我。为了破译人体DNA分子的全部核苷酸顺序,建立完整的遗传信息数据库,由多国政府支持的人体基因组计划在1989年启动,先后有美、英、日、德、法及中国等6个国家参与,并于2003年4月宣布完成人类基因组序列绘制。此后,有塞莱拉遗传信息公司等多家公司和实验室先后宣布独立或联合破译人体基因组。破译人类基因组序列这一生命科学成就将促进生物学的不同领域如神经生物学、细胞生物学、发育生物学等的发展;医学也将从中获得极大益处,5000多种遗传病以及恶性肿瘤、心血管疾病和其它严重危害人类的疾病,都有可能得到预防、早期诊断和治疗。 1990年,美国启动“人类基因组计划”,拉开解读和研究遗传物质DNA的序幕,截至日,全世界已有5973种生物进行基因组测序,其中已完成发表的有1117种。
基因突变/基因
是指由于DNA碱基对的置换、增添或缺失而引起的基因结构的变化,亦称点突变。在自然条件下发生的突变叫自发突变,由人工利用物理因素或化学药剂诱发的突变叫诱发突变。基因突变是生物变异的主要原因,是生物进化的主要因素。在生产上人工诱变是产生生物新品种的重要方法。根据基因结构的改变方式,基因突变可分为和移码突变两种类型。 碱基置换突变由一个错误的碱基对替代一个正确的碱基对的突变叫碱基置换突变。例如在DNA分子中的GC碱基对由CG或AT或TA所代替,AT碱基对由TA或GC或CG所代替。过程只改变被替换碱基的那个密码子,也就是说每一次碱基替换只改变一个密码子,不会涉及到其他的密码子。引起碱基置换突变的原因和途径有两个。一是碱基类似物的掺入,例如在大肠杆菌培养基中加入5-溴尿嘧啶(BU)后,会使DNA的一部分胸腺嘧啶被BU所取代,从而导致AT碱基对变成GC碱基对,或者GC碱基对变成AT碱基对。二是某些化学物质如亚硝酸、亚硝基胍、硫酸二乙酯和氮芥等,以及紫外线照射,也能引起碱基置换突变。 移码突变基因中插入或者缺失一个或几个碱基对,会使DNA的阅读框架(读码框)发生改变,导致插入或缺失部位之后的所有密码子都跟着发生变化,结果产生一种异常的多肽链。移码突变诱发的原因是一些像吖啶类染料分子能插入DNA分子,使DNA复制时发生差错,导致移码突变。 根据遗传信息的改变方式,基因突变又可以分为、错义突变和无义突变三种类型。 同义突变有时DNA的一个对的改变并不会影响它所编码的蛋白质的氨基酸序列,这是因为改变后的和改变前的密码子是,它们编码同一种氨基酸,这种基因突变称为同义突变。 错义突变由于一对或几对碱基对的改变而使决定某一氨基酸的密码子变为决定另一种氨基酸的密码子的基因突变叫错义突变。这种基因突变有可能使它所编码的蛋白质部分或完全失活,例如人血红蛋白β链的基因如果将决定第6位(谷氨酸)的密码子由CTT变为CAT,就会使它合成出的β链多肽的第6位氨基酸由谷氨酸变为缬氨酸,从而引起病。 无义突变由于一对或几对碱基对的改变而使决定某一氨基酸的密码子变成一个终止密码子的基因突变叫无义突变。其中密码子改变为UAG的无义突变又叫琥珀突变,密码子改变成UAA的无义突变又叫。
基因沉默/基因
按照遗传基本原理,如果某些基因能帮助父母生存和繁殖,父母就会把这些基因传给后代。但一些研究表明,真实情况要复杂得多:基因可以被关闭或沉默,以应对环境或其他因素,这些变化有时也能从一代传到下一代。
美国马里兰大学遗传学家提出了一种特殊机制,父母通过这种机制可以把沉默基因遗传给后代,而且这种沉默可以保持25代以上。这一发现可能改变人们对动物进化的理解,有助于将来设计广泛的遗传疾病疗法。相关论文在线发表于日的美国《国家科学院院刊》上。
他们对一种叫做秀丽隐杆线虫的蛔虫进行了研究,让它的神经细胞产生了与特殊基因相配的双链RNA分子(dsRNA)。dsRNA分子能在体细胞之间移动,当它们的序列与相应的细胞DNA匹配时,就能使该基因沉默。他们此次发现dsRNA还能进入生殖细胞,使其中的基因沉默。更令人惊讶的是,这种沉默可以保持25代以上。
长期稳定的沉默效果在开发遗传疾病疗法方面至关重要。研究人员一直把一种名为“RNA干扰”的过程(通常称为RNAi)作为一种潜在基因疗法,它可以用配对dsRNA瞄准任何疾病基因。而最大障碍是如何实现稳定的沉默,这样病人才不必反复使用高剂量dsRNA。
基因治疗/基因
基因治疗,顾名思义,就是用基因治病,实际上是指用导入人体内的基因的产物蛋白质来治病。日前在此间举行的一个国际医药生物技术研讨会上,美国人类基因组科学公司资深研究员倪健博士称,直接用基因来治疗是生物医药业发展的一条重要途径,新一代的生物医药——基因组医药和基因治疗将经历一场变革,带来生物医药业的第三次浪潮,给人类医药保健事业带来革命性的变化。 基因治疗所采用的方式,归纳起来可分为“ex vivo”与“in vivo”两种。“Ex vivo”指的是从病人身上取出特定的细胞 (如骨髓细胞,但已坏了),施以基因工程技术改造病症,举例来说,放入血友病人缺乏的正常基因,再选出会制造血友病人需要的的细胞。接着采用移植的观念将改造成功的细胞植入病人体内,如果成功的话,病人将不再常常依靠施打血友病蛋白以止血。达到这个目标则必需(a)细胞不会受到排斥所以用病人自己的细胞),而且永远制造血液蛋白质,(b)制造的血液蛋白质量足以治疗出血,(c)植入的细胞不会变成恶性细胞为害病人。“In vivo”的方式是将要治疗病人的基因经由遗传工程技术处理后,直接注射入病人身体内,人类对注射疫苗最有经验,因此许多基因疗法的策略是肌肉注射,肌细胞如忠实的 "吞入或感染了" 打入的基因且发挥功能如长期制造足量所需的蛋白质,则为成功的治疗,此法不需担心排斥的问题,但是要防止打入的基因到处乱窜,万一窜入生殖细胞,可能破坏染色体危及子代。
在遗传中的作用/基因
显微镜下的人体基因基因是决定有机体遗传特征的基本单位。基因由脱氧核糖核酸(DNA)分子构成,可以看作是化学指令。每个基因根据其DNA分子的特殊结构,包含某种特殊特征的代码,从而决定细胞的组成和作用(就好像计算机程序,不但告诉计算机做什么,而且还帮助形成计算机本身的结构)。在每个细胞中,成千上万个基因以特定的顺序连接在一起(就好像项链上串的珠子),形成称为“染色体”的结构,实际上就是连续的DNA链。据估计,每个细胞中包含大约1.5米长的螺旋形DNA链,每条链由大约100000个基因组成。基因的特殊组合及其染色体的排列方式构成了每个人的遗传蓝图。例如,细胞能形成肝组织,而不只是血细胞或,它们之所以能这样做是因为细胞遗传编码在起作用。按照这种方式,组织身体细胞得以形成一个人,每个人的眼睛和头发都有特定的颜色,而且每个人还有成千上万个其他特征,从而使得每个人都是独一无二的。生殖细胞人体中的每个细胞都包含46条染色体。生殖细胞(和)是唯一的例外,每个生殖细胞只包含23条染色体。当卵子通过精子受精后形成受精卵时,生殖细胞就会结合在一起,形成由父母双方贡献的带有各自基因的46条染色体。因为父母中的一方只贡献23条染色体(使父母双方成为独特个体的半数基因编码),所以子女的基因结构由父母双方基因物质混合而成。&显性和隐性性状基因给出的性状分为和。隐性基因只有在其效果超出显性基因的效果时才产生特定的性状。的颜色就相当直观地说明了性状的遗传方式。褐色眼睛的基因是显性的,而蓝色眼睛的基因是隐性的。具有两个褐色基因的褐色眼睛的父母一方和蓝色眼睛的父母另一方(必须有两个蓝色眼睛基因)生出来的孩子将有一双褐色眼睛,因为褐色眼睛父母一方只有显性褐色眼睛基因遗传给孩子的基因结构。但是,如果褐色眼睛父母一方具有显性褐色眼睛基因和隐性蓝色眼睛基因,孩子将有一半的概率从父母双方接受蓝色眼睛基因,从而有一半的概率生有蓝色眼睛。(实际上,遗传的情形并不总是像教科书举例说明的那样简单——有时褐色眼睛的父母一方和蓝色眼睛的父母一方所生出来的孩子会有绿色或淡褐色的眼睛。)两个蓝色眼睛的人相结合将总是生出蓝色眼睛的子女,因为受精卵只包含隐性蓝色眼睛基因。&父母双方的眼睛都为褐色,并且双方都有一个隐性蓝眼睛基因,那么生出来的孩子将有四分之一的概率从父母双方获得蓝色眼睛基因,从而拥有一双蓝色的眼睛。(最后这个的例子说明了隐性基因如何能够确定无疑地呈现出来,从而使得性状特征出乎意料地隔代显示。)基因突变通常,基因会毫无变化地从一代传递到下一代。但有时也会发生基因突变,即可能因有毒物质的作用、传染或暴露于放射性物质下而导致基因结构本身发生的变化。而遗传了变异基因的子女将显示出不同于父母双方的特征。DNA分子结构的发现开创了医学研究领域的新纪元。从事基因工程这一新领域研究的科学家们正在探索人工制造基因突变的方法,以便有一天能够纠正导致各种病症的基因编码错误。
工程应用/基因
基因在各个领域都有很大的作用,帮助人类克服疑难杂症,提高生产力。生产领域
人们可以利用基因技术,生产转基因食品。例如,科学家可以把某种肉猪体内控制肉的生长的基因植入鸡体内,从而让鸡也获得快速增肥的能力。但是,转基因因为有高科技含量,有些人怕吃了转基因食品中的外源基因后会改变人的遗传性状,比如吃了转基因猪肉会变得好动,喝了转基因牛奶后易患恋乳症等等。实际上这些担心都是不必要的,人们吃的所有食物都来自于其他生物体,几乎所有食物中都含有不计其数的带有异源基因的DNA,这些DNA分子在消化道类会被降解为单个的脱氧核糖核苷酸,才能被人体吸收用于自身遗传物质的构建。华中农业大学的张启发院士认为:“转基因技术为作物改良提供了新手段,同时也带来了潜在的风险。基因技术本身能够进行精确的分析和评估,从而有效地规避风险。对转基因技术的风险评估应以传统技术为参照。科学规范的管理可为转基因技术的利用提供安全保障。生命科学基础知识的科普和公众教育十分重要。”军事领域
生物武器已经使用了很长的时间.细菌,毒气都令人为之色变。但是,传说中的基因武器却更加令人胆寒。医疗方面
随着人类对基因研究的不断深入,发现许多疾病是由于基因结构与功能发生改变所引起的。科学家将不仅能发现有缺陷的基因,而且还能掌握如何进行对基因诊断、修复、治疗和预防,这是生物技术发展的前沿。这项成果将给人类的健康和生活带来不可估量的利益。所谓基因治疗是指用基因工程的技术方法,将正常的基因转入病患者的细胞中,以取代病变基因,从而表达所缺乏的产物,或者通过关闭或降低异常表达的基因等途径,达到治疗某些遗传病的目的。已发现的遗传病有6500多种,其中由单基因缺陷引起的就有约3000多种。因此,遗传病是基因治疗的主要对象。第一例基因治疗是美国在1990年进行的。当时,两个4岁和9岁的小女孩由于体内腺苷脱氨酶缺乏而患了严重的联合免疫缺陷症。科学家对她们进行了基因治疗并取得了成功。这一开创性的工作标志着基因治疗已经从实验研究过渡到临床实验。1991年,我国首例B型血友病的基因治疗临床实验也获得了成功。
基因治疗的最新进展是即将用基因枪技术于基因治疗。其方法是将特定的DNA用改进的基因枪技术导入小鼠的肌肉、肝脏、脾、肠道和皮肤获得成功的表达。这一成功预示着人们未来可能利用基因枪传送药物到人体内的特定部位,以取代传统的接种疫苗,并用基因枪技术来治疗遗传病。
科学家们正在研究的是胎儿基因疗法。如果实验疗效得到进一步确证的话,就有可能将胎儿基因疗法扩大到其它遗传病,以防止出生患遗传病症的新生儿,从而从根本上提高后代的健康水平。基因工程药物
基因工程药物,是重组DNA的表达产物。广义的说,凡是在药物生产过程中涉及用基因工程的,都可以成为基因工程药物。在这方面的研究具有十分诱人的前景。
基因工程药物研究的开发重点是从蛋白质类药物,如胰岛素、人生长激素、促红细胞生成素等的分子蛋白质,转移到寻找较小分子蛋白质药物。这是因为蛋白质的分子一般都比较大,不容易穿过细胞膜,因而影响其药理作用的发挥,而小分子药物在这方面就具有明显的优越性。另一方面对疾病的治疗思路也开阔了,从单纯的用药发展到用基因工程技术或基因本身作为治疗手段。
还有一个需要引起大家注意的问题,就是许多过去被征服的传染病,由于细菌产生了耐药性,又卷土重来。其中最值得引起注意的是结核病。据世界卫生组织报道,现已出现全球肺结核病危机。本来即将被消灭的结核病又死灰复燃,而且出现了多种耐药结核病。据统计,全世界现有17.22亿人感染了结核病菌,每年有900万新结核病人,约300万人死于结核病,相当于每10秒钟就有一人死于结核病。科学家还指出,在今后的一段时间里,会有数以百计的感染细菌性疾病的人将无药可治,同时病毒性疾病日益曾多,防不胜防。不过与此同时,科学家们也探索了对付的办法,他们在人体、昆虫和植物种子中找到一些小分子的抗微生物多肽,它们的分子量小于4000,仅有30多个氨基酸,具有强烈的广普杀伤病原微生物的活力,对细菌、病菌、真菌等病原微生物能产生较强的杀伤作用,有可能成为新一代的“超级抗生素”。除了用它来开发新的抗生素外,这类小分子多肽还可以在农业上用于培育抗病作物的新品种。农作物培育
科学家们在利用基因工程技术改良农作物方面已取得重大进展,一场新的绿色革命近在眼前。这场新的绿色革命的一个显著特点就是生物技术、农业、食品和医药行业将融合到一起。
本世纪五、六十年代,由于杂交品种推广、化肥使用量增加以及灌溉面积的扩大,农作物产量成倍提高,这就是大家所说的“绿色革命”。但一些研究人员认为,这些方法已很难再使农作物产量有进一步的大幅度提高。
基因技术的突破使科学家们得以用传统育种专家难以想象的方式改良农作物。例如,基因技术可以使农作物自己释放出杀虫剂,可以使农作物种植在旱地或盐碱地上,或者生产出营养更丰富的食品。科学家们还在开发可以生产出能够防病的疫苗和食品的农作物。基因技术也使开发农作物新品种的时间大为缩短。利用传统的育种方法,需要七、八年时间才能培育出一个新的植物品种,基因工程技术使研究人员可以将任何一种基因注入到一种植物中,从而培育出一种全新的农作物品种,时间则缩短一半。
虽然第一批基因工程农作物品种才开始上市,但美国种植的玉米、大豆和棉花中的一半将使用利用基因工程培育的种子。据估计,今后5年内,美国基因工程农产品和食品的市场规模将从的40亿美元扩大到200亿美元,20年后达到750亿美元。有的专家预计,“到下世纪初,很可能美国的每一种食品中都含有一点基因工程的成分。”
尽管还有不少人、特别是欧洲国家消费者对转基因农产品心存疑虑,但是专家们指出,利用基因工程改良农作物已势在必行。这首先是由于全球人口的压力不断增加。专家们估计,今后40年内,全球的人口将比增加一半,为此,粮食产量需增加75%。另外,人口的老龄化对医疗系统的压力不断增加,开发可以增强人体健康的食品十分必要。
加快农作物新品种的培育也是第三世界发展中国家发展生物技术的一个共同目标,我国的农业生物技术的研究与应用已经广泛开展,并已取得显著效益。分子进化研究
分子进化工程是继蛋白质工程之后的第三代基因工程。它通过在试管里对以核酸为主的多分子体系施以选择的压力,模拟自然中生物进化历程,以达到创造新基因、新蛋白质的目的。
这需要三个步骤,即扩增、突变和选择。扩增是使所提取的遗传信息DNA片段分子获得大量的拷贝;突变是在基因水平上施加压力,使DNA片段上的碱基发生变异,这种变异为选择和进化提供原料;选择是在表型水平上通过适者生存,不适者淘汰的方式固定变异。这三个过程紧密相连缺一不可。
科学家已应用此方法,通过试管里的定向进化,获得了能抑制凝血酶活性的DNA分子,这类DNA具有抗凝血作用,它有可能代替溶解血栓的蛋白质药物,来治疗心肌梗塞、脑血栓等疾病。环境保护超级菌利用基因工程可获得同时能分解多种有毒物质的新型菌种。1975年科学工作者把降解芳烃、萜烃、多环芳烃的质粒转移到能降解酯烃的一种假单胞菌细胞内,从而获得了能同时降解4种烃类的“超级菌”,它能把原油中约三分之二的烃消耗掉。据报道,自然菌种消化海上浮油要1年以上,而“”
只要几小时即可完成。另外,生物农药代替毒性大、对环境污染严重的化学农药是未来农药发展的方向。200年以来,中国学者已研制了兼具苏云金杆菌和昆虫杆状病毒优点的新型基因工程病毒杀虫剂,还研究成功重组有蝎毒基因的棉铃虫病毒杀虫剂,它们都是高效、无公害的,堪称是生物农药领域中的一大创新。
个人对猪肉味的喜好与基因有关/基因
美国科学家研究发现,讨厌还是喜欢猪肉做成的菜可能与个人体内的有关。
基因检测/基因
基因检测是通过血液、其他体液、或细胞对DNA进行检测的技术。基因检测可以诊断疾病,也可以用于疾病风险的预测。疾病诊断是用基因检测技术检测引起遗传性疾病的突变基因。目前应用最广泛的基因检测是新生儿遗传性疾病的检测、遗传疾病的诊断和某些常见病的辅助诊断。目前有1000多种遗传性疾病可以通过基因检测技术做出诊断。
男/女性肿瘤基因检测,通过肿瘤基因检测可以预知自身是否是高危人群以及通过良好的预防措施提高自身的健康免疫力。筛查疾病有结肠腺瘤、鼻咽癌、食管癌、白血病、肝癌、胃癌等等。
基因功能/基因
生物学功能,如作为蛋白质激酶对特异蛋白质进行磷酸化修饰;细胞学功能,如参与细胞间和细胞内信号传递途径;发育上功能,如参与形态建成等。
基因(密码子)起源/基因
基因就是编译氨基酸的密码子,因此,密码子的起源就是基因的起源。除了少数的不同之外,地球上已知生物的遗传密码均非常接近;因此根据演化论,遗传密码应在生命历史中很早期就出现。现有的证据表明遗传密码的设定并非是随机的结果,对此有以下的可能解释:ATP在细胞中位于生化系统的中心
韦斯(Carl&Richard&Woese)认为,一些氨基酸与它们相对应的密码子有选择性的化学结合力(立体化学假说,stereochemical&hypothesis),这显示现在复杂的蛋白质制造过程可能并非一早存在,最初的蛋白质可能是直接在核酸上形成。但王子晖(J.&Tze-Fei&Wong)认为,氨基酸和相应编码的忠实性反映了氨基酸生物合成路径的相似性,并非物理化学性质的相似性(共进化假说,co-evolution&hypothesis)。谢平提出,遗传密码子是生化系统的一部分,因
此,必须与生化系统的演化相关联,而生化系统的核心是ATP,只有它才能建立起核酸和蛋白质之间的联系(ATP中心假说,ATP-centric&hypothesis)。ATP中心假说示意图原始的遗传密码可能比今天简单得多,随着生命演化制造出新的氨基酸再被利用而令遗传密码变得复杂。虽然不少证据证明这一观点,但详细的演化过程仍在探索之中。经过自然选择,现时的遗传密码减低了突变造成的不良影响。Knight等认为,遗传密码是由选择(selection)、历史(history)和化学(chemistry)三个因素在不同阶段起作用的(综合进化假说)。
其它假说:艾根提出了试管选择(in&vitro&selection)假说,奥格尔(Leslie&Eleazer&Orgel)提出了解码(decoding)机理起源假说,杜维(Christian&de&Duve)提出了第二遗传密码(second&genetic&code)假说。Wu等推测,三联体密码从两种类型的双联体密码逐渐进化而来,&这两种双联体密码是按照三联体密码中固定的碱基位置来划分的,&包括前缀密码子(Prefix&codons)和后缀密码子(Suffix&codons)。不过,Baranov等推测三联体密码子是从更长的密码子(如四联体密码子quadruplet&codons)演变而来,因为长的密码子具有更多的编码冗余从而能抵御更大的突变压力。
万方数据期刊论文
光谱学与光谱分析
万方数据期刊论文
中华传染病杂志
万方数据期刊论文
光谱学与光谱分析
&|&相关影像
互动百科的词条(含所附图片)系由网友上传,如果涉嫌侵权,请与客服联系,我们将按照法律之相关规定及时进行处理。未经许可,禁止商业网站等复制、抓取本站内容;合理使用者,请注明来源于。
登录后使用互动百科的服务,将会得到个性化的提示和帮助,还有机会和专业认证智愿者沟通。
此词条还可添加&
编辑次数:71次
参与编辑人数:40位
最近更新时间: 16:17:11
申请可获得以下专属权利:
贡献光荣榜

我要回帖

更多关于 dna小沟 的文章

 

随机推荐