sg3525应用电路不接软启动电容可以吗

君,已阅读到文档的结尾了呢~~
PWM控制芯片SG3525原理及应用
扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
PWM控制芯片SG3525原理及应用
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='/DocinViewer--144.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口&nbsp&&&>G3524与SG3525的功能特点及软起动功能的比较
G3524与SG3525的功能特点及软起动功能的比较
编号:10-25794 | doc 格式 | 643.50K |
Ta 们刚刚下载了...热门搜索:
当前位置:
基于SG3525的大功率开关电源的研制
随着电子技术的高速发展,电子设备的种类与日俱增。任何电子设备都离不开可靠的供电电源,对电源供电质量的要求也越来越高,而开关电源在效率、重量、体积等方面相对于传统的晶体管线性电源具有显着优势。
  当VT1导通、VT2截止时,输入电流方向为图中虚线方向,向C2充电,同时C1通过VT1放电;当VT2导通、VT1截止时,输入电流方向为图中实线方向,向C1充电,同时C2通过VT2放电。  当VT1导通、VT2截止时,VT2两端承受的电压为输入直流电压Vin。IGBT的集-射极间并接RC吸收网络,降低开关管的开关应力,减小IGBT关断产生的尖峰电压;并联二极管实现续流的作用。二次整流采用单相桥式整流电路,通过后续的LC滤波电路,消除高频纹波,减小输出直流电压的低频振荡。LC滤波电路中的电容由多个高耐压、大容量的电容并联组成,以提高的可靠性,使输出直流电压更加平稳。  PWM集成芯片SG3525的功能特点  SG3525是一款功能齐全、通用性强的单片集成PWM芯片。它采用恒频脉宽调制控制方案,适合于各种、斩波器的控制。其主要功能包括基准电压产生电路、振荡器、误差放大器、PWM比较器、欠压锁定电路、软启动控制电路、推拉输出形式。SG3525的基本外围电路接线图如图2所示。该芯片与其它同类型的芯片相比具有许多突出的特点。  图2SG3525的基本外围接线图  (1)频率可调,一般通过改变CT和RT(见图2)的值来调节PWM波的输出频率,其频率的计算公式为:    (2)死区时间可调,通过调节RD即可改变死区时间的大小,防止逆变桥的上下桥臂直通。  (3)具有PWM脉冲信号封锁功能,当10脚电压高于2.5V时,可及时封锁脉冲输出,防止出现过压、过流、过热故障时对电路产生危害。  (4)芯片内振荡器工作频率为100Hz~400kHz。设有引脚3为同步端,为多个SG3525联用提供方便。  (5)具有软启动电路,比较器的反相输入端即软启动控制端芯片的引脚8,可外接软启动电容C。该电容器内部的基准电压Vref由恒流源供电,达到2.5V的时间t=(2.5V/50uA)C,占空比由小到大(50%)变化。  (6)内置PWM(脉宽调制)锁存器将比较器送来的置位信号锁存,并将误差放大器上的噪声、振铃及系统所有的跳动和振荡信号消除。只有在下一个时钟周期才能重新置位,系统的可靠性高。
&&&&&&&&&&&&
责任编辑:Jason
免责声明:
本文仅代表作者个人观点,与
OFweek电源网
无关。其原创性以及文中陈述文字和内容未经本站证实,
对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅
作参考,并请自行核实相关内容。
邮箱/用户名:
忘记密码?
用其他账号登录: QQ
请输入评论
广东省/深圳市
四川省/成都市
广东省/深圳市
广东省/深圳市
广东省/深圳市
广东省/深圳市
北京市/海淀区
广东省/深圳市
广东省/深圳市
广东省/惠州市
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:G3524与SG3525的功能特点及软起动功能的比较
19:03:27来源: 互联网
摘要:对PWM控制芯片SG3524与SG3525的工作性能作了介绍和比较,通过实验得出了SG3525在软上较SG3524有很大的改进。
关键词:SG3524;SG3525;脉宽调制;软起动
目前,越来越广泛地应用于各行各业中,是各种用电设备的重要组成部分。在开关的设计过程中,常常使用各种PWM的IC。因此,作为开关电源的设计者,有必要熟悉各种PWM的集成芯片的性能差别,才能在设计的时候灵活应用。下面主要针对常用的SG3524与SG3525两种芯片进行对比分析。
1 SG3524与SG3525
SG3524是定频PWM电路,采用16引脚标准DIP。其各引脚功能如图1(a)所示,内部如图1(b)所示。
脚9可以通过对地接阻容网络,补偿系统的幅频和相频响应特性。根据试验结果,对地接电容就可以实现软起动功能。
SG3525也是定频PWM电路,采用16引脚标准DIP封装。其各引脚功能如图2(a)所示,内部框图如图2(b)所示。脚8为软起动端。
2 SG3525相对SG3524的改进
SG3525在SG3524的基础上,主要作了以下改进。
1)增设欠压锁定电路 电路主要作用是当IC输入电压<8V时,集成块内部电路锁定,停止工作(基准源及必要电路除外),使之消耗电流降至很小(约2mA)。
2)有软起动电路 比较器的反相端即软起动控制端脚8可外接软起动电容。该电容由内部5V基准参考电压的50μA恒流源充电,使占空比由小到大(50%)变化。
3)比较器有两个反相输入端 SG3524的误差放大器、电流控制器和关闭控制3个信号共用一个反相输入端,现改为增加一个反相输入端,误差放大器与关闭电路各自送至比较器的反相端。这样,便避免了彼此相互影响,有利于误差放大器和补偿网络工作精度的提高。
4)增加PWM锁存器使关闭作用更可靠 比较器(脉冲宽度调制)输出送到PWM锁存器,锁存器由关闭电路置位,由振荡器输出时间脉冲复位。这样,当关闭电路动作,即使过电流信号立即消失,锁存器也可维持一个周期的关闭控制,直到下一个周期时钟信号使锁存器复位为止。
5)振荡器作了较大改进 SG3524中的振荡器只有CT及RT两引脚,充电和放电回路是相同的。SG3525的振荡器,除了CT及RT引脚外,增加了放电引脚7、同步引脚3。RT阻值决定对CT充电的内部恒流值,CT的放电则由脚5及脚7之间外接的电阻值RD决定。把充电和放电回路分开,有利于通过RD来调节死区的时间,这是重大的改进。在SG3525中增加了同步引脚3专为外同步用,为多个SG3525的联用提供了方便。
6)输出级作了结构性改进 电路结构改为确保其输出电平处于高电平,或低电平状态。另外,为了适应驱动MOSFET的需要,末级采用了推挽式电路,使关断速度更快。
SG3525增加的工作性能在实际应用中具有重要意义。例如,脚8增加的软起动功能,避免了开关电源在开机瞬间的电流冲击,可能造成的末级功率开关管的损坏。
3 实验结果
对SG3525与SG3524的软起动功能作了对比试验。图3给出了SG3525与SG3524软起动试验的原理图。图4给出了SG0μF电容和SG0μF电容时,在通电2s和5s时的输出脉宽波形图。
从图4的波形以及表1和表2的数据比较可以看到,虽然SG3524与SG3525都可以实现软起动功能,但是,由于SG3525本身设计了软起动电路,因此,在实际实现软起动的过程中,由其内部的恒流源给外部电容充电,工作时不会影响到其它的电路,而SG3524要实现软起动,就要与误差放大器、电流控制器等同用一个反相端,就会彼此互相影响。另外,在相同电容量的情况下,SG3525更有利于提高软起动时间。
表1 SG3525脚8接不同的对地电容时的软起动时间
脚8对地电容C/μF
软启动时间t/s
表2 SG3524脚9接不同的对地电容时的软起动时间
脚9对地电容C/μF
软启动时间t/s
通过实验证明,SG3525的软起动性能优于SG3524。
关键字:&&&&
引用地址:
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
微信扫一扫加关注 论坛活动 E手掌握
微信扫一扫加关注
芯片资讯 锐利解读
大学堂最新课程
TE工程师帮助将不可能变成可能,通过技术突破,使世界更加清洁、安全和美好。
TTI携TE传感器样片与你相见,一起传感未来
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
热门资源推荐
频道白皮书SG3525 产品说明书_图文_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
SG3525 产品说明书
上传于|0|0|暂无简介
阅读已结束,如果下载本文需要使用1下载券
想免费下载本文?
定制HR最喜欢的简历
下载文档到电脑,查找使用更方便
还剩5页未读,继续阅读
定制HR最喜欢的简历
你可能喜欢

我要回帖

更多关于 sg3525中文资料 的文章

 

随机推荐