这个怎么接线,上边那两个是输入,要接在两相松下400w伺服电机尺寸上

速机的电压为模拟连续性,此模式适合很高精度的速度;模拟位置环模式(ANP模式)输入命令电压控制电机;20,驱动器和系统如何接地?;a.如果在交流电源和驱动器直流总线(如变压器)之;b.在多数伺服系统中,所有的公共地和大地在信号端;c.为了保持命令参考电压的恒定,要将驱动器的信号;d.屏蔽层接地是比较困难的,有几种方法;21,减速器为什么不能和电机正好相配在标
速机的电压为模拟连续性,此模式适合很高精度的速度控制。当然,在低速情况下,它也容易受到干扰。
模拟位置环模式(ANP 模式)
输入命令电压控制电机的转动位置。这其实是一种在模拟装置中提供位置反馈的变化的速度模式(如可调电位器、变压器等)。在此模式下,电机速度正比于位置误差。且具有更快速的响应和更小的稳态误差。
20,驱动器和系统如何接地?
a. 如果在交流电源和驱动器直流总线(如变压器)之间没有隔离的话,不要将直流总线的非隔离端口或非隔离信号的地接大地,这可能会导致设备损坏和人员伤害。因为交流的公共电压并不是对大地的,在直流总线地和大地之间可能会有很高的电压。
b. 在多数伺服系统中,所有的公共地和大地在信号端是接在一起的。多种连接大地方式产生的地回路很容易受噪音影响而在不同的参考点上产生电流。
c. 为了保持命令参考电压的恒定,要将驱动器的信号地接到控制器的信号地。 它也会接到外部电源的地,这将影响到控制器和驱动器的工作(如:编码器的5V电源)。
d. 屏蔽层接地是比较困难的,有几种方法。正确的屏蔽接地处是在其电路内部的参考电位点上。这个点取决于噪声源和接收是否同时接地,或者浮空。要确保屏蔽层在同一个点接地使得地电流不会流过屏蔽层。
21, 减速器为什么不能和电机正好相配在标准转矩点?
如果考虑到电机产生的经过减速器的最大连续转矩,许多减速比会远远超过减速器的转矩等级。 如果我们要设计每个减速器来匹配满转矩,减速器的内部齿轮会有太多组合(体积较大、材料多)。 这样会使得产品价格高,且违反了产品的“高性能、小体积”原则。
22,我如何选择使用行星减速器还是正齿轮减速器?
行星减速器一般用于在有限的空间里需要较高的转矩时,即小体积大转矩,而且它的可靠性和寿命都比正齿轮减速器要好。正齿轮减速器则用于较低的电流消耗,低噪音和高效率低成本应用。
部分伺服驱动器故障检查方法参考:
示波器检查驱动器的电流监控输出端时,发现它全为噪声,无法读出
电流监控输出端没有与交流电源相隔离(变压器)
可以用直流电压表检测观察
电机在一个方向上比另一个方向跑得快
无刷电机的相位搞错
检测或查出正确的相位
在不用于测试时,测试/偏差开关打在测试位置
将测试/偏差开关打在偏差位置
偏差电位器位置不正确
速度反馈的极性搞错
可以尝试以下方法:
如果可能,将位置反馈极性开关打到另一位置。(某些驱动器上可以)
如使用测速机,将驱动器上的TACH+和TACH-对调接入。
3. 如使用编码器,将驱动器上的ENC A和ENC B对调接入。
如在HALL速度模式下,将驱动器上的HALL-1和HALL-3对调,再将Motor-A和Motor-B对调接好。
编码器速度反馈时,编码器电源失电
检查连接5V编码器电源。确保该电源能提供足够的电流。如使用外部电源,确保该电压是对驱动器信号地的。
LED灯是绿的,但是电机不动
一个或多个方向的电机禁止动作
检查+INHIBIT 和 CINHIBIT 端口
命令信号不是对驱动器信号地的
将命令信号地和驱动器信号地相连
上电后,驱动器的LED灯不亮
供电电压太低,小于最小电压值要求
检查并提高供电电压
当电机转动时, LED灯闪烁
HALL相位错误
检查电机相位设定开关(60°/120°)是否正确。 多数无刷电机都是120°相差。
HALL传感器故障
当电机转动时检测Hall A, Hall B, Hall C的电压。电压值应该在5VDC和0之间。
LED灯始终保持红色
原因: 过压、欠压、短路、过热、驱动器禁止、HALL无效
23, 何为负载率(duty cycle)?
负载率(duty cycle)是指电机在每个工作周期内的工作时间/(工作时间+非工作时间)的比率。如果负载率低,就允许电机以3倍连续电流短时间运行,从而比额定连续运行时产生更大的力量。
24,标准旋转电机的驱动电路可以用于直线电机吗?
一般都是可以的。你可以把直线电机就当作旋转电机,如直线步进电机、有刷、无刷和交流直线电机。具体请向供应商咨询。
25,直线电机是否可以垂直安装,做上下运动?
可以。根据用户的要求,垂直安装时我们可以加装动子滑块平衡装置或加装导轨抱闸刹车。
26,在同一个平台上可以安装多个动子吗?
可以。只要几个动子之间不互相妨碍即可。
27,是否可以将多个无刷电机的动子线圈安装于同一个磁轨道上?
可以。只要几个动子之间不互相妨碍即可。
28,AMS的直线电机是否可以用于特殊环境,如水溅、真空、洁净室、辐射等环境?
可以提供。具体请与我们联系。
29,使用直线电机比滚珠丝杆的线性电机有何优点?
由于定子和动子之间没有机械连接,所以消除了背隙、磨损、卡死问题,运动更加平滑。突出了更高精度、高速度、高加速度、响应快、运动平滑、控制精度高、可靠性好体积紧凑、外形高度低、长寿命、免维护等特点。
30,你们的滑台可以做多个组合一起使用吗?
是的。可以组合为XY, XZ, YZ, XYZ及其它灵活组合。
伺服电机与步进电机性能比较
--------------------------------------------------------------------------------
步进电机是一种离散运动的装置,它和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异。现就二者的使用性能作一比较。
一、控制精度不同
两相混合式步进电机步距角一般为3.6°、 1.8°,五相混合式步进电机步距角一般为0.72 °、0.36°。也有一些高性能的步进电机步距角更小。如四通公司生产的一种用于慢走丝机床的步进电机,其步距角为0.09°;德国百格拉公司(BERGER LAHR)生产的三相混合式步进电机其步距角可通过拨码开关设置为1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角。
交流伺服电机的控制精度由电机轴后端的旋转编码器保证。以松下全数字式交流伺服电机为例,对于带标准2500线编码器的电机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360°/
6°。对于带17位编码器的电机而言,驱动器每接收217=131072个脉冲电机转一圈,即其脉冲当量为360°/.89秒。是步距角为1.8°的步进电机的脉冲当量的1/655。
二、低频特性不同
步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。
交流伺服电机运转非常平稳,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点,便于系统调整。
三、矩频特性不同
步进电机的输出力矩随转速升高而下降,且在较高转速时会急剧下降,所以其最高工作转速一般在300~600RPM。交流伺服电机为恒力矩输出,即在其额定转速(一般为2000RPM或3000RPM)以内,都能输出额定转矩,在额定转速以上为恒功率输出。
四、过载能力不同
步进电机一般不具有过载能力。交流伺服电机具有较强的过载能力。以松下交流伺服系统为例,它具有速度过载和转矩过载能力。其最大转矩为额定转矩的三倍,可用于克服惯性负载在启动瞬间的惯性力矩。步进电机因为没有这种过载能力,在选型时为了克服这种惯性力矩,往往需要选取较大转矩的电机,而机器在正常工作期间又不需要那么大的转矩,便出现了力矩浪费的现象。
五、运行性能不同
步进电机的控制为开环控制,启动频率过高或负载过大易出现丢步或堵转的现象,停止时转速过高易出现过冲的现象,所以为保证其控制精度,应处理好升、降速问题。交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部构成位置环和速度环,一般不会出现步进电机的丢步或过冲的现象,控制性能更为可靠。
六、速度响应性能不同
步进电机从静止加速到工作转速(一般为每分钟几百转)需要200~400毫秒。交流伺服系统的加速性能较好,以松下MSMA 400W交流伺服电机为例,从静止加速到其额定转速3000RPM仅需几毫秒,可用于要求快速启停的控制场合
伺服电动机
伺服电动机(或称执行电动机)是自动控制系统和计算装置中广泛应用的一种执行元件。其作用为把接受的电信号转换为电动机转轴的角位移或角速度。按电流种类的不同,伺服电动机可分为直流和交流两大类。
一、交流伺服电动机
1、结构和原理
交流伺服电动机的定子绕组和单相异步电动机相似,它的定子上装有两个在空间相差90°电角度的绕组,
即励磁绕组和控制绕组。运行时励磁绕组始终加上一定的交流励磁电压,控制绕组上则加大小或相位随信号变化的控制电压。转子的结构形式笼型转子和空心杯型转子两种。笼型转子的结构与一般笼型异步电动机的转子相同,但转子做的细长,转子导体用高电阻率的材料作成。其目的是为了减小转子的转动惯量,增加启动转矩对输入信号的快速反应和克服自转现象。空心杯形转子交流伺服电动机的定子分为外定子和内定子两部分。外定子的结构与笼型交流伺服电动机的定子相同,铁心槽内放有两相绕组。空心杯形转子由导电的非磁性材料(如铝)做成薄壁筒形,放在内、外定子之间。杯子底部固定于转轴上,杯臂薄而轻,厚度一般在0.2―0.8mm,因而转动惯量小,动作快且灵敏。
交流伺服电动机的工作原理和单相异步电动机相似,LL是有固定电压励磁的励磁绕组,LK是有伺服放大器供电的控制绕组,两相绕组在空间相差90°电角度。如果IL与Ik 的相位差为90°,而两相绕组的磁动势幅值又相等,这种状态称为对称状态。与单相异步电动机一样,这时在气隙中产生的合成磁场为一旋转磁场,其转速称为同步转速。旋转磁场与转子导体相对切割,在转子中产生感应电流。转子电流与旋转磁场相互作用产生转矩,使转子旋转。如果改变加在控制绕组上的电流的大小或相位差,就破坏了对称状态,使旋转磁场减弱,电动机的转速下降。电机的工作状态越不对称,总电磁转矩就越小,当除去控制绕组上信号电压以后,电动机立即停止转动。这是交流伺服电动机在运行上与普通异步电动机的区别。
交流伺服电动机有以下三种转速控制方式:
(1)幅值控制
控制电流与励磁电流的相位差保持90°不变,改变控制电压的大小。
(2) 相位控制
控制电压与励磁电压的大小,保持额定值不变,改变控制电压的相位。
(3)幅值―相位控制
同时改变控制电压幅值和相位。交流伺服电动机转轴的转向随控制电压相位的反相而改变。
2 工作特性和用途
伺服电动机的工作特性是以机械特性和调节特性为表征。在控制电压一定时,负载增加,转速下降;它的调节特性是在负载一定时,控制电压越高,转速也越高。伺服电动机有三个显著特点:
(1)启动转矩大 由于转子导体电阻很大,可使临界转差率Sm>1,定子一加上控制电压,转子立即启动运转.
(2)运行范围宽 在转差率从0到1的范围内都能稳定运转.
(3)无自转现象 控制信号消失后,电动机旋转不停的现象称"自转".自转现象破坏了伺服性,显然要避免.
正常运转的伺服电动机只要失去控制电压后,伺服电动机就处于单相运行状态。由于转子导体电阻足够大,使得总电磁转矩始终是制动性的转矩,当电动机正转时失去Uk(控制电压),产生的转矩为负(0<S<1)。而反转时失去UK,产生的转矩为正(1〈S〈2时〉,不会产生自转现象,可以自行制动,迅速停止运转,这也是交流伺服电动机与异步电动机的重要区别。
不同类型的交流伺服电动机具有不同的特点。笼型转子交流伺服电动机具有励磁电流较小、体积较小、机械强度高等特点;但是低速运行不够平稳,有抖动现象。空心杯形转子交流伺服电动机具有结构简单、维护方便、转动惯量小、运行平滑、噪声小、没有无线电干扰、无抖动现象等优点;但是励磁电流较大,体积也较大,转子易变形,性能上不及直流伺服电动机。
交流伺服电动机适用于0.1―100W小功率自动控制系统中,频率有50Hz、400Hz等多种。笼型转子交流伺服电动机产品为SL系列。空心杯形转子交流伺服电动机为SK系列,用于要求运行平滑的系统中。
二、直流伺服电动机
直流伺服电动机的基本结构与普通他励直流电动机一样,所不同的是直流伺服电动机的电枢电流很小,换向并不困难,因此都不用装换向磁极,并且转子做得细长,气隙较小,磁路不饱和,电枢电阻较大。按励磁方式不同,可分为电磁式和永磁式两种,电磁式直流伺服电动机的磁场由励磁绕组产生,一般用他励式;永磁式直流伺服电动机的磁场由永久磁铁产生,无需励磁绕组和励磁电流,可减小体积和损耗。为了适应
各种不同系统的需要,从结构上作了许多改进,又发展了低惯量的无槽电枢、空心杯形电枢、印制绕组电枢和无刷直流伺服电动机等品种。
电磁式直流伺服电动机的工作原理和他励式直流电动机同,因此电磁式直流伺服电动机有两种控制转速方式:电枢控制和磁场控制。对永磁式直流伺服电动机来说,当然只有电枢控制调速一种方式。由于磁场控制调速方式的性能不如电枢控制调速方式,故直流伺服电动机一般都采用电枢控制调速。直流伺服电动机转轴的转向随控制电压的极性改变而改变。
直流伺服电动机的机械特性与他励直流电动机相似,即n=n0-αT。当励磁不变时,对不同电压Ua有一组下降的平行直线。
直流伺服电动机适用于功率稍大(1―600W)的自动控制系统中。与交流伺服电动机相比,它的调速线性好,体积小,质量轻,启动转矩大,输出功率大。但它的结构复杂,特别是低速稳定性差,有火花会引起无线电干扰。近年来,发展了低惯量的无槽电枢电动机、空心杯形电枢电动机、印制绕组电枢电动机和无刷直流伺服电动机,来提高快速响应能力,适应自动控制系统的发展需要,如电视摄象机、录音机、X―Y函数记录仪及机床控制系统等。
----------------------------------------------
包含各类专业文献、各类资格考试、专业论文、外语学习资料、生活休闲娱乐、幼儿教育、小学教育、中学教育、交流伺服电机的工作原理01等内容。 
 伺服电机工作原理_机械/仪表_工程科技_专业资料。伺服电机的工作原理图伺服电机...现在,高性能的伺服 系统, 大多数采用永磁交流伺服系统其中包括永磁同步交流伺服...  交流伺服电动机的工作原理与分相式单相异步电动机虽然相似, 但前者的转子电阻比后 者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点: 1、起动转矩大...  交流伺服电机结构、工作原理及运行特点_机械/仪表_工程科技_专业资料。从交流伺服电机的结构看,它是一种两相异步电机。其定子结构有凸极式和隐极式两种。天津...  三.伺服电动机的分类 伺服电动机分交、 直流两类。交流伺服电动机的工作原理与交流感应电动机 相同。在定子上有两个相空间位移 90°电角度的励磁绕组 Wf 和控制...  伺服电机驱动器的工作原理 伺服驱动器又称为“伺服控制器” 、 “伺服放大器” ,是用来控制伺服电机的一种控制器, 其作用类似于变频器作用于普通交流马达, 属于...  交流伺服电机的基本结构与工作原理 交流伺服电机通常都是单相异步电动机, 有鼠笼形转子和杯形转子两种结构形式。 与普通电机一样,交流伺服电机也由定子和转子构成。...  2.交流伺服电动机 1)交流伺服电动机的结构与特点 交流伺服电动机分笼型转子和杯形转子(杯形转子可视为无数条并 联的导体条组成)两类结构,其工作原理与两相异步...  伺服驱动器的工作原理[1]_电子/电路_工程科技_专业资料。随着全数字式交流伺服系统的出现, 交流伺服电机也越来越多地应用于数字控制系统中。 为 了适应数字控制的...  伺服系统的三大工作原理解析
伺服驱动器在工业自动化中扮演者非常重要得觉得, 其主要通过 数字化交流或直流为电机提供控制,执行所需要的命令。 随着数 ...您当前的在位置:&>&&>&公司新闻
伺服电机与步进电机接线对比
发布时间:&&新闻来源:
步进电机驱动器的接线比驱动器要简单许多;对Pcommand 脉冲伺服电机控制器而言,步进电机驱动器只接受控制器所送出的脉冲信号,其他的信号形式无法接受,因为步进电机无同轴的反馈信号可供参考;伺服电机驱动为线圈切换激磁方式,无法形成速度伺服电机定位及转矩伺服电机控制。
步进电机驱动器主要输入为正转及反转引脚,接线处理前必须将使用手册阅读清楚。
以步进电机驱动器为例,其与FX2N-1PG模块配合接线如图2.46所示。较大的差异在于FX2N-1PG的集电极开路,射极电流采用共节点处理。
步进电机无反馈信号,因此无零相脉冲反馈可供原点复位用,但是伺服电机控制器一般都是依零相脉冲信号进行原点复位,所以步进电机驱动器提供TIMING信号。
以两相步进电机驱动器为例,每圈分成200步级,驱动器没接收4个脉冲信号即由TIMING引脚产生1个脉冲,不同于伺服电机的每转1圈产生1个零相脉冲。
步进电机驱动器TIMING引脚与FX2N-1PG模块PG0+和PG0-引脚配合接线,完整的步进电机驱动器接线。此时已经不需要计数器清除的信号,因为步进电机驱动器无偏差计数器,也无过极限开关引脚可用,所示接线比伺服电机简单许多。
&&其它新闻& & &两相(交流)电机有时用作精密唱机的转盘。它是一种低型的同步机构。
& & &图1为两相电机驱动器。这个电路能驱动8欧两相电机。每个绕组可达3瓦。在45到65Hz。选用LM377双路3瓦音频作驱动。用正负11V。
图1 两相电机驱动器电路
& & &电路工作原理。的左半部分接成文氏桥,频率可调由RV1调节,频率可变范围45Hz&65Hz。调节由RV2控制,灯泡LP1作稳定振幅用。1a的输出一路直接馈送电机的一相绕组。集成电路的另一半IC1b是作为85移相器用。C6、R6是85移相器。但是在60HZ时要乘以一个十倍的衰减因子,所以IC1b要乘以十倍的增益。电路稳定性经去耦网络C3&R4&R5,C4和C5保证。电机绕组与C8、C9所组成的谐振回路,到中间频率值(55Hz)。
& & &伺服电机系统
& & &伺服电机是一种传统的电机。它是自动装置的执行元件。伺服电机的最大特点是可控。在有控制信号时,伺服电机就转动,且转速大小正比于控制电压的大小。去掉控制电压后,伺服电机就立即停止转动。伺服电机的应用甚广,几乎所有的自动控制系统都需要用到。在家电产品中,例如录相机、激光唱机等都是不可缺少的重要组成部分。
& & &1.简单伺服电机的工作原理
& & &图2示出了伺服电机的最简单的应用。电位器RV1由伺服电机带动。电机可选用不超过700mA,电压为12~24V的任一种伺服电机。图中RV1 和RV2是接成惠斯登(Wheatstone)电桥。集成电路LM378是双路4瓦功率放大器,也以桥接方式构成电机驱动差分放大器。
图2 伺服电机的最简单的应用
& & &当RV2的任意变化,都将破坏电桥的平衡,使RV1&RV2之间产生一差分电压,并且加以放大后送至电机。电机将转动,拖动电位器RV1到新的位置,使电桥重新达到新的平衡。所以说,RV1是跟踪了RV2的运动。
& & &图3是用方块图形式,画出了测速伺服电机系统,能用作唱机转盘精密速度控制的原理图。电机用传统的皮带机构驱动转盘。转盘的边缘,用等间隔反射条文图形结构。用光电测速计进行监视和检测。光电测速计的输出信号正比于转盘的转速。把光电测速计输出信号的和频率,与标准振荡器的相位和频率进行比较,用它的误差信号控制电机驱动电路。因此,转盘的转速就精确地保持在额定转速上。额定转速的换档,可由操作开关控制。这些控制电路,已有厂家做成专用的集成电路。
图3 测速传感器伺服电机系统
& & &2.数字比例伺服电机
& & &伺服电机的最好类型之一,是用数字比例遥控系统。实际上这些装置是由三部份组成:采用集成电路、伺服电机、减速齿轮盒电位器机构。图4是这种系统的方块图。电路的驱动输入,是用为15ms而脉冲宽度为1~2ms的脉冲信号驱动。输入脉冲的宽度,控制伺服机械输出的位置。例如:1ms脉宽,位置在最左边;1.5ms在中是位置,2ms在最右边的位置。
图4 数字比例控制伺服系统方框图
& & &每一个输入脉冲分三路同时传送。一路触发1.5ms脉宽的固定脉冲发生器。一路输入触发脉冲发生器,第三路送入脉宽比较电路。用齿轮盒输出至RV1,控制可变宽度的脉冲发生器。这三种脉冲同时送到脉宽比较器后,一路确定电机驱动电路的方向。另一路送给脉宽扩展器,以控制伺服电机的速度,使得RV1迅速驱动机械位置输出跟随输入脉宽的任何变化。
& & &上述伺服电机型常用于多路遥控系统。图5示出了四路数字比例控制系统的波形图。
图5 四路数字比例控制系统的波形图
& & &从图中可以看出是串行数据输入,经过译码器分出各路的控制信号。每一帧包含4ms的同步脉冲,紧接在后面的是四路可变宽度(1~2ms)顺序的&路&脉冲。译码器将四路脉冲变换为并行形式,就能用于控制伺服电机。
& & &3.数字伺服电机电路
& & &数字伺服电机控制单元,可以买到现成的集成电路。例如ZN409CE或NE544N型伺服电机放大器集成电路。图6示出了NE544N集成电路的典型应用。
图6 NE544N型伺服系统
& & &图中元件值适用于输入脉冲宽度为1~2ms,帧脉冲宽度大约为18ms的情况。
& & &图7是适用上述伺服电机型的通用测试电路。伺服电源电池通常为5V。输入脉冲经标准的伺服插座送到伺服电路。帧脉冲的宽度为13&28ms;用RV1调节控制。RV2调节控制脉冲宽度在1&2ms之间。用RV4微调中间值为1.5ms.输出由RV3进行调节。
图7 适用上述伺服电机型的通用测试电路
& & &两个集成电路为时基电路7555型,电源电压可以低到3V仍然工作。IC1为无稳多谐振荡器,产生帧时间脉冲,它的输出触发IC2。而IC2是一个单稳电路,产生输出测试脉冲。
本网站试开通微、小企业商家广告业务;维修点推荐项目。收费实惠有效果!欢迎在QQ或邮箱联系!
试试再找找您想看的资料
资料搜索:
查看相关资料 & & &
   同意评论声明
   发表
尊重网上道德,遵守中华人民共和国的各项有关法律法规
承担一切因您的行为而直接或间接导致的民事或刑事法律责任
本站管理人员有权保留或删除其管辖留言中的任意内容
本站有权在网站内转载或引用您的评论
参与本评论即表明您已经阅读并接受上述条款
copyright & &广电电器(中国梧州) -all right reserved& 若您有什么意见或建议请mail: & &
地址: 电话:(86)774-2826670& & &&)

我要回帖

更多关于 伺服电机两相电流采集 的文章

 

随机推荐