如何解决显示仪表干扰 波动的干扰困扰13

遨游工控(a Successful 2009!)
&&|&&&&|&&个人主页&&|&& &&|&&
我想超越这平凡的生活,注定现在暂时漂泊。
日一二三四五六25262728293031123456789101112131415161718192021222324252627282930311234
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
enBAA1.1(a)1.1(b)
1.1 BACOS1/10~1/1002) 1.212ec
1/100~1/100050Hz3) 4) 45) 1~101.3
6) 2 1) * * 2.1
2C2s,C2s2ec=eses=020* 2) * 1.32.2
1.41)2)3)()4)——71)2)3)4)5)()6)7)1)2)3)4)5)10∶1(15/)捷配欢迎您!
微信扫一扫关注我们
当前位置:&>>&&>>&&>>&显示仪表使用中的干扰分析及对策措施
&&& &数字压力表仪表在石油和化工领域的广泛应用中或试验现场使用时的条件常常是很复杂的,周围存在大量强交变磁场、电场、振动、热噪声、强辐射、温度效应、动力等,都有可能影响检测数据的正确采集和生产过程的自动控制而成为干扰源。
&&& 化工显示仪表与各种传感器、配套后,可用来显示不同的参数。但是,数字压力表仪表在石油和化工领域的广泛应用中或试验现场使用时的条件常常是很复杂的,周围存在大量强交变磁场、电场、振动、热噪声、强辐射、温度效应、动力电源等,都有可能影响检测数据的正确采集和生产过程的自动控制而成为干扰源。这些与被测信号无关的电压或电流以多种形式耦合加载到检测、控制、显示设备,使信号采集失准、记录显示失真、被测参数有用信号质量下降、自动控制不能及时进行,甚至操作失控,直接影响正常生产、产品质量和经济效益的提高。这些干扰大多很难改变,但设法加以有效抑制却十分必要
  一、数字式显示仪表的原理及组成概况
  数字显示仪表一般是由模数转换、非线性补偿及标度变换三大部分组成。它是以电信号为输入量,直接用数字显示被测量。实现数字显示的关键是通过A/D转换装置把连续变化的模拟量变换成断续的数字量。在生产中要求显示仪表反映的显示值是被测参数的函数,并且要求能自动地补偿其它干扰因素,这些函数关系有些是线性的,但多数是非线性的。为了将被测参数能以绝对值的形式显示出来,对于显示仪表,需要将被测参数进行一些必要的运算、处理及非线性补偿,同时补偿其它参数对被测参数的影响。在A/D转换中,采用一定的计量单位使连续变化的模拟量整量化,得到近似的断续的数字量。计量单位越小整量化的误差也就越小,A/D转换装置的频率响应、前置放大的稳定性等也越高,数字量就越接近于连续量本身的值。这一过程是通过双积分型、电压频率转换型、脉冲宽度调制型及逐次比较电压反馈编码型等A/D转换器来实现的。非线性补偿或标度变换是对检测来的信号进行必要的运算,使数字式显示仪表能以被测参数的直接数字表达出来。模拟式非线性补偿通过改变运算放大器的放大倍数来补偿不同范围的输入电压,而数字式非线性补偿则是先把被测参数的模拟量经过A/D转换成数字量后再进入非线性补偿环节,具有精度高、通用性强的优点,随着数字计算机的发展,标度变换及非线性补偿任务由计算机来完成。
  二、显示仪表应用中的抗干扰措施
  干扰的产生
  生产中,被测参数往往被转换成微弱的低电平电压信号,并通过长距离叠加到信号线上,进入仪表。
  1.电磁感应线路形成的闭合回路处在这种变化的磁场中将被感应出电势,使信号源与之间的连接导线、仪表内部的配线通过磁耦合在电路中形成干扰。这种电磁感应电势与有用信号相串联,当信号源与显示仪表相距较远时,干扰较为突出。此外,高频率发生器、带整流子的电机等设备,也会产生高频率的干扰。
  2.静电感应。静电感应是两电场相互作用的结果。在相对的两根导线中,如其一的电位发生变化,则由于导线间的变化使得另一导线的电位也发生变化,干扰源以电容性的耦合在回路中形成干扰。
  3.附加热电势和化学电势。由于不同金属产生的热电势以及金属腐蚀等产生的化学电势,在电路回路中形成直流电气干扰。
  4.振动。在强振动的环境中,导线由于在磁场中处于运动状态而产生感应电势,此干扰与信号相串联,以串模干扰形式进入仪器仪表。
  5.不同地电位引入的干扰。在大功率的用电设备附近,当设备的绝缘性能较差时,不同地电位的电位差的引入形成干扰,而在仪表的使用中往往会有意无意地使输入端存在两个以上的连接点,这样就会把不同接地点的电位差以共模干扰形式引入到仪器仪表,这种干扰是同时出现在两信号线上的。
  6.信号源是不平衡电桥。当桥路电源接地时,除桥路对角线的不平衡电压,产生干扰。
  7.一些脉冲状的干扰电压除能作用于模拟电路外,有时也能直接进入数字电路中给予干扰,这些干扰电压的发生源是开关、电机、继电器那样的感性负载和产生放电的机器等。
  干扰的抑制
  干扰问题的形成是因为有干扰源的存在,并通过一定的耦合渠道对仪器仪表产生影响。为减少这些影响,在设计仪表时就应考虑对干扰的抑制问题,尽量提高其抗干扰的能力。在实际应用中,要找出并结合绞扭、屏蔽、接地、平衡、滤波、隔离等方法,切断耦合通道以抑制干扰。同时,要求显示仪表具有耐高温、低温、高压、腐蚀、高粘度等性能和较好的动态特性,以减少被测参数的测量误差。
  1.串模干扰的抑制方法
  串模干扰可能产生在信号源,也很可能是从引线上感应或接收而来。由于串模干扰与被测信号所处地位相同,所以一旦产生了串模干扰之后,它的有害作用往往不大容易消除,所以应该首先防止它的产生。
  就能使信号回路所包围的面积大为减小,使电场通过在两信号线上的感应耦合进入回路的串模干扰电位差大为减少。
  包起来,再在外面包上一层绝缘物或信号线直接采用屏蔽,屏蔽层接地。因非磁性屏蔽层对50赫兹的磁场无效果,必要时可把信号线穿入铁管中,使信号导线得到磁屏蔽。而在静电屏蔽后,能使感应电势减小到原有的1/100~1/1000。
  滤波:对变化速度很慢的直流信号,在仪器仪表输入端加入滤波电路,以使混杂于有效信号的干扰衰减到最小。常在输入级前加二至三级R-C滤波电路,而以采用内阻较低的双T型滤波器效果更好。
  对消:双积分型和脉冲调宽型等数字仪表,对输入信号的平均值而不是瞬时值进行A/D转换,能把一些串模干扰平均掉。
  尽量使信号线与分开敷设。合理布线,在允许的条件下将导线的电流流向作反方向处理,以减弱相互产生的磁场的干扰;不允许把信号线与动力线平行敷设在一起,亦不应由同一穿线孔洞进入仪器仪表内。低电平信号线应以尽量短的不绞扭线接至信号端子的相邻位置上,以减少感应干扰的面积,绝对禁止电源线、信号线用同一根电缆。高电平和低电平线也不要用同一接线插件。在不得已时,把高电平和低电平线分开放在接插件旁边,中间隔以地线端子和备用端子。
  2.共模干扰的抑制,以切断共模干扰电压的泄漏途径,使干扰无法进入。在低电平测试中,信号线只应有一点接地且信号线的屏蔽层也须有一点接地,无论信号线和仪器仪表等均需加以屏蔽,把接地和屏蔽正确地结合起来使用,往往能解决大部分的干扰问题。当有一个不接地信号源与一个接地放大器相连时,信号线屏蔽层应接至放大器的公共端。当有一个接地信号源与一个不接地放大器相连时,即使信号源端接的不是大地,信号线屏蔽层也应接至信号源的公共端,使之保持零电位,可有效切断电位的泄漏电流,提高测量信号的抗干扰能力,这是测量系统中常用的方法。
  仪表采用双层屏蔽浮地保护技术:为提高仪器仪表抗共模干扰能力,在放大器输入部分浮地的同时,仪器仪表采用双层屏蔽浮地保护。除利用表壳作一层屏蔽外,在仪器仪表内再用一个内屏蔽罩将放大器输入部分屏蔽起来。在两屏蔽层之间、在放大器输入部分和内屏蔽层之间都不作电气上的连接。内屏蔽层不要与仪器仪表外壳相接,而应单独引出一根线作为保护屏蔽端与信号线的屏蔽层相连接,从而使保护屏蔽延伸到信号线全长,而信号线的屏蔽在信号源处一点接地,这样使仪器仪表的输入保护屏蔽及信号屏蔽对信号源稳定起来,处于等电位状态。所以,屏蔽能用来降低耦合到导线上的共模电压。
  应用平衡电路:一个系统的稳定程度取决于信号源、信号引线、负载的平衡以及其它杂散分布参数的平衡。为提高仪器仪表抗共模干扰能力,采用平衡措施使两线路上所转换的电压相等,以此来降低耦合到负载上的该部分共模电压。
  电源引入干扰的抑制:在仪器仪表内部主要的干扰来自小功率变压器产生的漏电流。为防止泄漏电流干扰,可将变压器初级绕组放在屏蔽层之内,并将屏蔽层接地,此时变压器初级绕组上的相电压通过对屏蔽层的分布电容,使漏电电流直接流入地,而不再流入放大器、测量电路和信号源中产生干扰。为防止电源变压器引入干扰,采用三层屏蔽结构即电源变压器初级屏蔽层直接与表壳接地,供电装置的次级绕组与所有屏蔽层相接,放大器电源的次级绕组屏蔽层与放大器地处于等电位状态。由电源引起的脉冲状干扰,对数字电路有较大影响,应在电源线路上加装高频滤波器,滤波器应装在输入和输出引线都经过穿心电容进行滤波的铁制屏蔽盒内。
技术资料出处:世界工厂网
该文章仅供学习参考使用,版权归作者所有。
因本网站内容较多,未能及时联系上的作者,请按本网站显示的方式与我们联系。
【】【】【】【】
上一篇:下一篇:
本文已有(0)篇评论
发表技术资料评论,请使用文明用语
字符数不能超过255
暂且没有评论!
12345678910
12345678910
12345678910
提到空气净化器,从其选购到使用,网上各种“指南”一搜一大把,内容大多千篇一律,无非是教用户怎么买、怎么用。不过“学习”了这么久,您真的能玩转家中的空气净化器吗?别的不说,咱今天重点聊聊绝大部分净化器标配,但99%用户可能忽略的小部件――空气质量传感器。本文将为您详解,这个看似[][][][][][][][][][]
IC热门型号
IC现货型号
推荐电子百科后使用快捷导航没有帐号?
只需一步,快速开始
查看: 9796|回复: 6
仪表信号干扰!
阅读权限30
主题好友积分
签到天数: 13 天连续签到: 0 天&
注册海川吧,与320万海川交流分享
才可以下载或查看,没有帐号?
谁能告诉我仪表信号干扰的种类及消除方法?谢谢 .
上一篇:下一篇:& &
阅读权限75
主题好友积分
签到天数: 1 天连续签到: 0 天&
一般有电磁干扰,用屏蔽线。
阅读权限70
主题好友积分
签到天数: 2 天连续签到: 0 天&
原来,在我们市电电网中,额定频率50HZ的市电并不“纯净”。由于电网中存在着各种各样的感性和容性负载,加上各类干扰脉冲,使得市电中夹杂着许多杂讯和杂波,特别是突发脉冲和高频干扰。这就使得电源的工作环境十分恶劣,为了不让外界的干扰信号入侵干扰仪表的工作,也为了不让仪表工作时产生的电磁信号外泄污染电网,厂家一般会在仪表的电源里设计一种抗EMI(Electro Magnetic Interference电磁干扰)电路,以过滤各种干扰信号,净化电源工作环境,提高仪表工作的稳定性。 常见的EMI电路如附件所示:
实际上是由几只特殊的电容和电感所组成,它能极大地减少外界的干扰信号,特别是共模干扰信号对仪表的影响。 1)但这个EMI电路跟机壳漏电又有什么关系呢?当然有关。在这个电路上的中间,两个串联的用于平缓波形的大电容(CY3、CY4)之间的公共点是接地的,而由于仪表中的地线是接在外壳上的。因此,在仪表工作的时候,外壳上会有一定的感应电压。在仪表的地线没有真正接地时,这种感应电压一般都有80多伏,但是因为电流非常小,人接触到不会有危险。一般只有皮肤较敏感的人在较干燥的天气时才会感觉会有点麻手,而平时大多数人几乎不会感觉到什么。 2)那么怎样解决这种问题呢?最好的办法就是将仪表的地线真正接地,这样既保证安全又能防止电磁干扰。现在一般正规布线的屋子里的电源插座里都有地线,但如果没有接地线,则需要将仪表外壳接一根线电源柜或其他安全可靠的接地排上(要保证接地电阻小于4欧)。 3)为什么有的仪表不漏电呢?这里面主要有两方面的原因。一是有的电源在电路设计时为了节约成本将电容容量设计偏小。这样一来产生的感应电压就很小,感应电流就更加不明显,但这是以损失EMI电路的滤波和平缓波形的性能为代价的;二是一些杂牌电源偷工减料干脆省掉了EMI电路,这样的劣质电源使用在仪表上的后果会怎样,大家可想而知。  
因此单凭漏电与否来判断电源是否有质量安全问题并不可靠。大家在选购仪表时一点要选购带有EMI电路以保证仪表具有优秀的抗干扰能力和良好的稳定性。
提起电磁干扰(EMI)这个词,人们或许还感陌生,但EMI的影响却是几乎每个人都曾身经历过的。例如,观看电视时,附近有人使用电钻、电吹风等电器,会使电视画面出现雪花点,所声器里发出剌耳的噪声……这类现象人们早已司空见惯、习以为常了,但是电磁干扰的危害却远不止如此。事实上,电磁干扰已使民航系统失效、通信不畅、计算机运行错误、自控设备误动作等,甚至危及人身安全。因此,加强电磁容性(EMC)知识的普及,提高EMI抑制技术,已成为当务之急。
& &&&  所谓电磁兼容性是指电子线路、系统相互不影响,在电磁方面相互兼容的状态。对于EMC技术的研究,国外是从本世纪三十年代开始的,一些国家和国际组织如美国联邦通信委员会(FCC),德国电气电子工程师协会(VDE)、国际无线电干扰特别委员会(CISPR)等先后制定了一些指导性文件和规程,目前已形成一套较完整的体系,并得到严格遵守,美国计算机业即全面执行FCC规程。我国电磁兼容性工作起步较晚,相关标准自八十年代才陆续出台,应用方面则由于缺乏经验和技术而举步艰难。如何尽快赶上国际先进水平,使我国电子产品能满足日益迫切的国内需求并在国际市场占一席之地,已成为为大家关心的重大课题。本文愿就电磁干扰抑制技术谈一点浅见,抛砖引玉,与各位共同切磋。
& &&&  电磁干扰的定义,是指由外部噪声和无用电磁波在接收中所造成的骚扰。一个系统或系统内某一线路受电磁干扰程度可以表示为如下关系式:
& &&&  N=G×C/I
& &&&  G:噪声源强度;
& &&&  C:噪声通过某种途径传到受干扰处的耦合因素;
& &&&  I:受干扰电路的敏感程度。
& &&&  G、C、I这三者构成电磁干扰三要素。电磁干扰抑制技术就是围绕这三要素所采取的各种措施,归纳起来就是三条:一、抑制电磁干扰源;二、切断电磁干扰耦合途径;三、降低电磁敏感装置的敏感性。下面就这三方面分别作出介绍。
& &&&  一、抑制干扰源
& &&&  要想掏干扰源,首先必须确定何处是干扰源,在越靠近干扰源的地方采取措施,抑制效果越好。一般来说,电流电压剧变即di/dt或du/dt大的地方就是干扰源;具体来说继电器开合、电容充电、电机运转、集成电路开关工作等都可能成为干扰源。另外,市电电源也并非理想的50Hz正弦波,而是充满各种频率噪声,是个不可忽视的干扰源。抑制方法可以采用低噪声电路、瞬态抑制电路、旋转装置抑制电路、稳压电路等;器件的选择则尽可能采用低噪声、高频特性好、稳定性高的电子元件。要注意,抑制电路中不适当的器件选择可能会产生新的干扰源。
& &&&  二、切断电磁干扰耦合途径
& &&&  电磁干扰耦合途径主要为传导和辐射两种。噪声经导线直接耦合到电路中最常见的。抑制传导干扰的主要措施是串接滤波器。滤波器分为低通(LPF)、高通(HPE)、带通(BPF)、带阻(BEF)四种,根据信号与噪声频率的差别选择不同类型的滤波器。如果噪声频率远高于信号频率,常采用LC低通滤波器,这种滤波器结构简单,滤除噪声效果也较好。但是对于军用或TEMPEST技术以及要求较高的民用产品,则必须采用穿心式滤波器。
& &&&  穿心式滤波器(Feed-thruFilters)也称为穿越式滤波器,电路结构有C型、T型和LC型,其特点在于高频特性优良,可工作在1GHz以上。这是其“同轴”性质决定的,由于它无寄生电感,提高了自谐频率。穿心式滤波器体积小、重量轻,允许电流大大,可广泛用于各种不同场合。
& &&&  对于通过供电电源线传导的噪声可以用电源滤波器来滤除。只符合VDE0871标准的电源滤波器在30K-30MHZ范围内插入损耗为20-100dB。电源滤波器不仅可以接在电网输入处,也可接在噪声源电路的输出处,以抑制噪声输出,而且交直流两用。电源滤波器端口分高阻和低阻两端,应根据输入及负载阻抗不同来选择正确的接法。连接的原则是依照阻抗最失配,即高阻输入端接滤滤器阻端,低阻负载端接滤波器高阻端;反之亦然。
& &&&  对传输线路及印刷电路板的布线设计,应注意进线与出线、信号线与电源线尽量分开。对于重点线路可采用损耗线滤波器、三端子电容、磁环等器件进行干扰抑制。对于接口端,国外有带滤波的D型、圆形、方形连接器产品,这类连接器是在普通连接器上加装电容或电感,构成滤波电路,其特点是不占用。PCB空间,不增加体积,这对于现代元件高密度设计极为重要。最近,国内也有厂家生产,质量不低于国外水平,可以替代进口。
& &&&  对于辐射干扰,主要措施是采用屏蔽技术和分层技术。屏蔽技术是一门科学,选择适当的屏蔽材料,在适当的位置屏蔽,对屏蔽效果至关重要。尤其是屏蔽室的设计。可供选择的屏蔽材料种类繁多,有各种金属板、指形铍铜合金簧片、铜丝网、编织铜带、导电橡胶、导电胶、导电玻璃等等。应根据需要选择。屏蔽室的设计应充分考虑门窗、通风口、进出线口的屏蔽与搭接。除静电屏蔽外,还需考虑磁屏蔽以及接地和接大地技术。
& &&&  三、降低电磁敏感装置的敏感度
& &&&  电磁敏感装置的敏感是一柄双刃剑;一方面人们希望接收装置灵敏度高,以提高对信号的接收能力;另一方面,灵敏高受噪声影响的可能性也就越大。因此,根据具体情况采用降额设计、避设计、网络钝化、功能钝化等方法是解决问题的办法。
& &&&  综上所述,对于电磁干扰的抑制方法很多,可以选择一种或多种综合运用。但不论选择什么方法都应从设计之初就着手系统电磁兼容性的考虑,而不是亡羊补牢。据报道,若在产品开始研制时即进行电磁兼容设计,大约90%的传导和辐射干扰都可以得到控制。根据可靠性、安全性、质量要求、环境控制、效/费权衡,选择适当的电磁干扰抑制技术,这就是电磁兼容性的研究内容。
(9.79 KB, 下载次数: 27)
15:18 上传
帮助他人解决问题
阅读权限30
主题好友积分
该用户从未签到&
解释的比较专业 ,谢谢 受教了
阅读权限30
主题好友积分
签到天数: 268 天连续签到: 12 天[LV.5]海川常住居民II&
解释很好,很专业。谢谢了。
阅读权限20
该用户从未签到&
谢谢 , 受教了。
阅读权限30
签到天数: 73 天连续签到: 1 天[LV.3]海川居民&
谢谢 , 受教了。
和\看图查隐患(1.9)安全漫画(1.9) 安全重于泰山消防安全漫画(1.9) 就要“追”上你啦仪表安装的穿线盒怎么选?记忆中的承德
我这刚开始复习,准备17年注化专业考试,遇到个例题,里面涉及到生产过程的氨损失按5%
海川化工论坛网化工技术交流第一社区,共同学习 共同提高!
广告投放/网站事务
QQ: 活动专用QQ:
举报及事务联系邮箱:&&
工作日均访客8万人 IP 6万 欢迎您的参与
版权所有 丰行天下-海川化工论坛 -
Discuz! X3如何解决显示仪表的干扰困扰_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
如何解决显示仪表的干扰困扰
上传于||暂无简介
阅读已结束,如果下载本文需要使用0下载券
想免费下载更多文档?
定制HR最喜欢的简历
你可能喜欢

我要回帖

更多关于 1个穴位解决鼻塞困扰 的文章

 

随机推荐