电子元器件型号规格器件规格书中表某一参数时表格有疏密不匀,为什么不是等距的,想表达什么,这样表达有什么好处?

CONVERTER BRIDGE ARM SUITABLE FOR HIGH-VOLTAGE APPLICATIONS AND APPLICATION SYSTEM THEREOF
WIPO Patent Application WO/
A converter bridge arm suitable for high-voltage applications and an application system thereof. The converter bridge arm comprises an energy storage capacitor (C) and a plurality of reverse-conducting switches, and is formed by serial connection of an upper telescopic arm (Bu), a lower telescopic arm (Bd) and an inductor (Lb). The upper telescopic arm (Bu) and the lower telescopic arm (Bd) are respectively formed by cascading connection of a plurality of units. The converter bridge arm has a simple modular structure, is easy to control, reliable and convenient for starting a high-voltage circuit, has self-balancing voltage sharing effect, and can operate without a transformer and has the characteristic of power bidirectional flow, does not require high-voltage isolation auxiliary power supply, has the advantages of suitability for high-frequency operation and electromagnetic compatibility, and can remarkably reduce the dimension of a filter.
Inventors:
LV, Yao (Room 202, Unit 3 Building 37,Qiushicun, Xihu Distric, Hangzhou Zhejiang 2, 310012, CN)
Application Number:
Publication Date:
04/25/2013
Filing Date:
09/21/2012
Export Citation:
LV, Yao (Room 202, Unit 3 Building 37,Qiushicun, Xihu Distric, Hangzhou Zhejiang 2, 310012, CN)
International Classes:
View Patent Images:
&&&&&&PDF help
Foreign References:
CNACNAJPACNACNACNA
Attorney, Agent or Firm:
SHANGHAI HUAQI INTELLECTUAL PROPERTY AGENCY (Room 1024, Hanzhong MansionNo.158 Hanzhong Road, Zhabei District, Shanghai 0, 200070, CN)
1、 一种适用于高压应用的变流桥臂, 包括储能电容 c与多个逆导型开关; 其特征 在于, 该变流桥臂由上伸缩臂 Bu、 下伸缩臂 Bd和电感 Lb串联构成, 上伸缩臂 Bu和下 伸缩臂 Bd分别由若干个对称型单元级联构成;
所述的对称型单元:
由第一开关 Kl、第二开关 Κ2、第三开关 Κ3、第四开关 Κ4及储能电容 C构成;其中, 第一开关 K1与第二开关 Κ2、第三开关 Κ3与第四开关 Κ4分别串联;第一开关 K1与第三 开关 Κ3的正端相连作为单元的正端 ρ*, 第二开关 Κ2与第四开关 Κ4的负端相连作为单 元的 η*端; 储能电容 C接于正端 ρ*和负端 η*之间; 第一开关 K1与第二开关 Κ2的连接 处为单元的第二级联端 Ζ12, 第三开关 Κ3与第四开关 Κ4的连接处为单元的第四级联端 Ζ22;
所述若干个对称型单元的级联方式为: 相邻的两个单元之间, 前一单元的第四级联 端 Ζ22与后一单元的第二级联端 Z12相连;
桥臂的上、 下端分别为桥臂的 Ρ端和 Ν端;
上伸缩臂 Bu和下伸缩臂 Bd两端的外侧单元中: 引出其正端 p*和负端 n*作为变流 桥臂的辅助端; 并以其第二级联端 Z12为 p端、 第四级联端 Z22为 n端, p端、 n端的 排列与变流桥臂 P端、 N端的方向一致;
上伸缩臂 Bu的 n端与下伸缩臂 Bd的 p端之间的连线上引出桥臂的中点即 Ac端; 电感 Lb是下述形式中的任意一种:
( 1 ) 有一个电感 Lb, 位于上伸缩臂 Bu、 下伸缩臂 Bd的串联支路上的任何位置; ( 2 )有两个电感 Lb, 分置于上伸缩臂 Bu、 下伸缩臂 Bd的串联支路上 Ac端的两侧; ( 3 ) 有若干个电感 Lb, 分置于各对称型单元之中。
2、 基于权利要求 1所述变流桥臂的 AC调压器, 由一个或多个变流桥臂构成, 其特 征在于:
AC调压器由一个变流桥臂构成的情况下, 该变流桥臂的 P端、 N端组成一个交流端 口, Ac端、 N组成另一个交流端口, 从而构成单相电子调压器; 或者,
AC调压器由多个变流桥臂构成的情况下, 各变流桥臂的 P端、 N端分别按照多边形 或星形接法引出一个多相交流端口,各变流桥臂的 Ac端分别引出另一个多相交流端口, 从而构成多相 AC/AC电子调压器。
3、 一种适用于高压应用的变流桥臂, 包括储能电容 C与多个逆导型开关; 其特征 在于, 该变流桥臂由上伸缩臂 Bu、 下伸缩臂 Bd和电感 Lb串联构成, 上伸缩臂 Bu和下 伸缩臂 Bd分别由若干个单元级联构成; 所述的单元是平衡非对称型单元或平衡对称型 单元中的任意一种或两种;
所述平衡非对称型单元:
由第一开关 Kl、第二开关 Κ2、第三开关 Κ3、第四开关 Κ4及储能电容 C构成;其中, 第一开关 K1与第二开关 Κ2、第三开关 Κ3与第四开关 Κ4分别串联;第一开关 K1与第三 开关 Κ3的正端相连作为单元的正端 ρ*, 该端同时也是单元的第一级联端 Z11 ; 第二开 关 Κ2与第四开关 Κ4的负端相连作为单元的负端 η*, 该端同时也是单元的第四级联端 Ζ22; 储能电容 C的两端分别接于第一级联端 Z11和第四级联端 Ζ22; 第一开关 K1与第 二开关 Κ2的连接处为单元的第二级联端 Ζ12,第三开关 Κ3与第四开关 Κ4的连接处为单 元的第三级联端 Z21 ;
所述平衡对称型单元:
由第一开关 Kl、 第二开关 Κ2、 第三开关 Κ3、 第四开关 Κ4、 第五开关 Κ5、 第六开关 Κ6、 第七开关 Κ7、 第八开关 Κ8及储能电容 C构成; 其中, 第一开关 K1与第二开关 Κ2 串联, 其连接处为单元的第一级联端 Z11 ; 第三开关 Κ3与第四开关 Κ4串联, 其连接处 为单元的第三级联端 Z21 ; 第五开关 Κ5与第六开关 Κ6串联, 其连接处为单元的第二级 联端 Z12; 第七开关 Κ7与第八开关 Κ8串联, 其连接处为单元的第四级联端 Ζ22; 第一 开关 Kl、 第三开关 Κ3、 第五开关 Κ5与第七开关 Κ7的正端相连作为单元的正端 ρ*, 第 二开关 Κ2、 第四开关 Κ4、 第六开关 Κ6和第八开关 Κ8的负端相连作为单元的负端 η*; 储能电容 C的两端分别接于正端 ρ*与负端 η*;
所述若干个单元的级联方式为: 相邻的两个单元之间具有两组级联端的连接关系, 具体为: 前一单元的第三级联端 Z21与后一单元的第一级联端 Z11相连, 前一单元的第 四级联端 Ζ22与后一单元的第二级联端 Z12相连; 其中, 有一组级联端是通过电感 Ls 或电阻 R或电感 Ls与电阻 R的并联电路实现连接的, 另一组级联端则是直接连接; 上伸缩臂 Bu和下伸缩臂 Bd两端的外侧单元中: 引出其正端 p*和负端 n*作为变流 桥臂的辅助端; 并以其第二级联端 Z12为 p端、 第四级联端 Z22为 n端, p端、 n端的 排列与变流桥臂 P端、 N端的方向一致;
上伸缩臂 Bu的 n端与下伸缩臂 Bd的 p端之间的连线上引出桥臂的中点即 Ac端; 电感 Lb是下述形式中的任意一种:
( 1 ) 有一个电感 Lb, 位于上伸缩臂 Bu、 下伸缩臂 Bd的串联支路上的任何位置; ( 2 )有两个电感 Lb,分置于上伸缩臂 Bu、下伸缩臂 Bd的串联支路上 Ac端的两侧; ( 3 ) 有若干个电感 Lb, 分置于各对称型单元之中。 4、 根据权利要求 3所述的变流桥臂, 其特征在于, 所述伸缩臂由平衡非对称型单 元级联构成; 相邻两个单元中, 前一单元的第四开关 K4和后一单元的第一开关 K1的其 中之一以二极管代替, 该二极管的极性与被代替的开关中逆导二极管的极性相同。
5、 根据权利要求 3所述的变流桥臂, 其特征在于, 所述伸缩臂由平衡对称型单元 级联构成; 相邻两个单元中, 前一单元的第七开关 K7、 第八开关 Κ8和后一单元的第五 开关 Κ5、 第六开关 Κ6其中一个或两个以二极管代替, 且同一单元中的两个开关不能同 时被二极管代替, 该二极管的极性与被代替的开关中逆导二极管的极性相同。
6、 根据权利要求 3所述的变流桥臂, 其特征在于, 所述伸缩臂由平衡对称型单元 级联构成; 相邻两个单元中, 前一单元的第七开关 Κ7、 第八开关 Κ8和后一单元的第五 开关 Κ5、 第六开关 Κ6其中一个或两个以二极管代替, 且同一单元中的两个开关不能同 时被二极管代替, 该二极管的极性与被代替的开关中逆导二极管的极性相同;
同时, 对被二极管替代的第五开关 Κ5、 第六开关 Κ6、 第七开关 Κ7或第八开关 Κ8 的连线方式改接: 第五开关 Κ5的正端、 第六开关 Κ6的负端改接到第二级联端 Ζ12, 第 七开关 Κ7的正端、 第八开关 Κ8的负端接到第四级联端 Ζ22 ; 这种改接仅涉及替代的二 极管, 未被替代的开关不改接; 这里所述的正、 负端是指替换前的原开关的极性, 而非 指替代后的二极管的极性。
7、 根据权利要求 3所述的变流桥臂, 其特征在于, 所述伸缩臂由平衡非对称型单 元级联构成; 且相邻两个单元中, 前一单元的第三级联端 Z21与后一单元的第一级联端 Z11直接连接, 前一单元的第四级联端 Ζ22与后一单元的第二级联端 Z12直接连接; 前 一单元的第四开关 Κ4与后一单元的第一开关 K1中, 省略其中之一。
8、 根据权利要求 3所述的变流桥臂, 其特征在于, 所述伸缩臂由平衡对称型单元 级联构成;且相邻两个单元中,前一单元的第三级联端 Z21与后一单元的第一级联端 Z11 直接连接, 前一单元的第四级联端 Ζ22与后一单元的第二级联端 Z12直接连接; 前一单 元的第七开关 Κ7与后一单元的第五开关 Κ5中,省略其中之一; 前一单元的第八开关 Κ8 与后一单元的第六开关 Κ6中, 省略其中之一。
9、 根据权利要求 3所述的变流桥臂, 其特征在于, 上伸缩臂 Bu的 η端单元与下伸 缩臂 Bd的 p端单元之间采用双线连接,具体为: n端单元的第四级联端 Z22与 p端单元 的第二级联端 Z12直接连接, n端单元的第三级联端 Z21与 p端单元的第一级联端 Z11 通过电感 Ls或电阻 R或电感 Ls与电阻 R的并联电路实现连接。
10、 根据权利要求 3所述的变流桥臂, 其特征在于, 所述若干个单元的级联方式替 换为: 相邻的两个单元之间具有两组级联端的连接关系, 具体为: 前一单元的第三级联 端 Z21通过电感 Ls l与与后一单元的第一级联端 Z11相连, 前一单元的第四级联端 Z22 通过电感 Ls2与后一单元的第二级联端 Z12相连; 电感 Lsl和电感 Ls2具有下述四种关 系中的任意一种:
( 1 ) Lsl、 Ls2为独立电感;
( 2 ) Lsl、 Ls2为耦合电感, 储能电容 C上的电压 Uc平衡电流在两个电感中的磁通 相互增强;
( 3 ) Lsl、 Ls2为独立电感, 其中之一并联了电阻 R;
( 4) Lsl、 Ls2为耦合电感, 储能电容 C上的电压 Uc平衡电流在两个电感中的磁通 相互增强, 其中之一并联了电阻 R。
11、 基于权利要求 3至 10中任意一项所述变流桥臂的变流电路, 具有常规的变流 拓扑, 其特征在于, 是以所述变流桥臂取代普通桥臂, 变流桥臂的上伸缩臂 Bu和下伸 缩臂 Bd均由平衡非对称型单元级联构成, 从而构成下述几种变流电路中的任意一种: ( 1 )由变流桥臂构成双向 DC/DC变流器,变流桥臂的 P端和 N端接一个直流源的正、 负端, 其 Ac端在串联一个滤波电感后和 N端接另一直流源的正、 负端;
( 2 ) 由一个或多个变流桥臂构成单相或多相 DC/AC或 AC/DC变流器, 变流桥臂的 P 端、 N端分别并联为直流正、 负端, 各变流桥臂 Ac端分别为各相交流端;
( 3 )由两个或多个变流桥臂构成单相或多相背靠背 AC/DC/AC变流器,变流桥臂的 P 端、 N端分别并联为直流正、 负端, 第一组变流桥臂的 Ac端分别接第一交流源各相, 第 二组桥臂 Ac端分别接第二交流源各相。
12、 基于权利要求 3至 10中任意一项所述变流桥臂的变流器, 是在变流桥臂上再 接一个或多个伸缩臂形成三相或多相变流器; 其特征在于, 所述伸缩臂和变流桥臂中的 上伸缩臂 Bu、 下伸缩臂 Bd均由平衡对称型单元级联构成; 变流器的接法是下述接法中 的任意一种:
( 1 )变流桥臂的 P端、 N端分别接三相电源的两相, 新增的伸缩臂一端接于变流桥 臂的 Ac端, 另一端接三相电源的另一相, 从而形成星形变流器; 进一步增加伸缩臂数 量则构成星形多相变流器; 或者
( 2 )变流桥臂的 P端、 N端并联上新增的伸缩臂并分别接三相电源的两相, 变流桥 臂的 Ac端接三相电源的另一相, 从而形成三角形变流器; 将多个伸缩臂串联后并联于 变流桥臂 P端、 N端则构成多边形多相变流器。
13、 基于权利要求 1或 3至 10中任意一项所述变流桥臂的 AC/AC变流器, 其特征 在于, 具有一个或多个变流桥臂, 其电路结构是下述三种中的任意一种:
( 1 ) 单个变流桥臂的 P端、 N端为一个交流端口, Ac端、 N端为另一个交流端口, 从而构成单相 AC/AC变频器; 或者 ( 2 ) 变流桥臂的 P端、 N端分别按照多边形或星形接法引出一个多相交流端口, 各 桥臂 Ac端分别引出另一个多相交流端口, 从而构成多相 AC/AC变频器; 或者
( 3 ) 第一组三个变流桥臂的 P端、 N端分别按照三角形或星形接法连接输入各相、 第二组三个变流桥臂的 P端、 N端分别按照三角形或星形接法连接输出各相; 两组的 Ac 端分别接三相中频变压器的原、 副边绕组, 从而构成电子变压器。
14、 基于权利要求 1或 3所述变流桥臂的变流控制方法, 其特征在于: 通过调节各 开关的驱动脉冲控制伸缩臂内的各单元端电压 Us, 进而控制上伸缩臂 Bu、 下伸缩臂 Bd 的端电压 Uu、 Ud; 通过动态调节 Uu、 Ud之和控制流过变流桥臂 P端、 N端之间的平均 电流 1(TM), 进而控制变流桥臂所有单元的 Uc之均值; 通过互补地调节 Uu、 Ud大小, 实现 对 Ac端电位的调节; 通过动态调节 Uu、 Ud的相对大小改变流过上伸缩臂 Bu、下伸缩臂 Bd的电流 IP、 IN的分配, 进而平衡两者 Uc均值之差异; 通过调节上伸缩臂 Bu、 下伸 缩臂 Bd内的各单元端口间电压台阶 Us的均值相对大小, 平衡伸缩臂中各单元的 Uc的 差异。
15、 根据权利要求 14所述的变流控制方法, 其特征在于, 所述的单元的开关调制 脉冲相位采取以下四种方式之一:
( 1 ) 同一伸缩臂中的各单元采用脉冲相位相同的控制方式; 或
( 2 ) 同一伸缩臂中的各单元采用脉冲相位递延的控制方式; 或
( 3 )同一伸缩臂中的各单元采用载波按圆周角等分移相的 SP丽调制,上伸缩臂 Bu、 下伸缩臂 Bd之间对应单元的载波相位互补; 或
( 4) 对于三个桥臂构成三相 DC/AC、 AC/DC变流器, 各桥臂的同位单元六个一组采 用 SVPWM方式控制, 同一伸缩臂中的各单元调制载波按圆周角等分移相。
Description:
适合于高压应用的变流桥臂及其应用系统 技术领域
本发明涉及电力系统的控制技术,特别涉及一种适合于高压应用的变流桥臂及其应 用系统, 主要应用于智能电网(例如: 特特高压输电、交-直-交变流、 电力电子变压器、 新能源高压并网发电) 、 大功率电力传动 (高压、 中压变频传动) 、 电力牵引。 背景技术
高压大功率变流器一直是电力电子在电力系统与高功率电力传动中应用的关键技 术。 当实际应用场合所需的电压超过单个电力半导体器件的耐压值之后, 必须采用开关 串联技术或多电平技术。 由于常规高压功率半导体器件的耐压值大致为广 5kV, 而其中 的普通常用器件 IGBT大致仅为 1200V。若采用 3400V耐压的器件,则其价格远远高于前 者; 即便不顾成本而用更高耐压的器件, 不用开关串联技术或多电平技术仍然难以满足 电力系统的高压工作要求。 另一方面, 器件随着耐压水平的提高, 其允许开关频率越来 越低, 增加了变流系统的体积与重量。
对于高压变流电路, 器件的直接串联是不得已的方案。 尽管这有其结构相对简单的 优点, 但是非常高的开关电压变化率还是会造成电磁兼容方面的问题, 并且会使负载设 备的可靠性降低, 寿命缩短。 况且, 器件的均压控制方法随着串联数的增加而变得更加 困难, 需要更大的耐压裕度, 因此可以说, 开关串联技术并不适合在电力系统中单独使 用。
于是,变流器采用多电平电路就显得是顺理成章了。多电平电路可以应用于 DC/AC、 DC/DC, AC/DC与 AC/AC上, 为叙述方便起见, 以下主要从逆变 (即 DC/AC) 的角度来阐 述。
( 1 ) 功率开关
电压型变流器中常用到逆导型开关,可以由功率半导体开关与反并联的功率二极管 这两个独立的器件组成, 也可以是一体化器件, 为方便起见这里简称为开关 (K, 符号 如图 3电路中所示) , 开关的正、 负极方向正好与其中反并联二极管极性相反。 常用的 Κ有带反向并联二极管的绝缘栅极双极型复合晶体管 (IGBT) 与功率金属氧化物场效应 晶体管(Power M0SFET)器件, 也可以是晶闸管、 集成电路门极换流晶体闸管(IGCT) 、 结型场效应功率器件(Power JFET) , 以及各种碳化硅功率开关等其他新型器件。 图 10 的电路中, K应用了 Power M0SFET。 用多个逆导型开关串联起来形成的组合开关, 在本 发明中依然可以看作是一个开关。 ( 2) 目前已有的几种重要多电平变流电路:
第一种电路: 二极管箝位多电平电路, 该类电路最早见于 1980年的 IEEE IAS会议 论文 (A. Naba) ;
第二种电路: 飞跨电容箝位多电平电路, 该类电路最早见于 1992年的 IEEE PESC 年会论文 (T. A. Meynard) ;
第三种电路: 统一箝位多电平电路, 该类电路最早见于 2000年的 IEEE IAS会议论 文 (F. Z. Peng) ;
第四种电路: 级联多电平电路, 该类电路最早见于 1988年的 PESC会议论文 (M. Marcheson) 。
第一、 第二种电路的主要问题是, 电路的复杂度随着电平数的增加而迅速提高, 元 器件数量迅速上升 (前者是开关器件、 箝位二极管, 后者是箝位电容) , 更为严重的是 分布电感影响和控制难度也随之极大增加, 实际上七电平以上的应用就不多了。
第三种电路的主要问题是, 随着电平数的增加, 元器件数量的增加速度比前两种还 快, 在工业界还是没有实际应用。 事实上第三种电路仅有理论意义, 前两种电路分别是 第三种电路的特例。
第四种电路没有上述第一、 二、 三种电路的上述缺点, 它可以依靠独立电源平衡均 压, 并容易实现模块化 (以 H桥为单元模块) , 已经广为应用于中压变频, 交流电压一 般在 10kV 以内。 由于第四种电路一般需要为每一单元提供一套独立电源, 这使装置的 主变压器结构相当复杂, 这也限制了电平数量的进一步提升。
第四种电路在无功应用领域 (例如电力系统的柔性输电装置之一: STATC0M) 则没 有多路独立电源这一限制, 但是随着电平数的增加, 均压问题却依然面临极大挑战。
( 3) 第五种电路, 平衡级联多电平变流
即"自平衡级联多电平",它能够实现变流单元的自动均压是新电路的最显著特点, 出现于 2006年的浙江大学博士论文 (F. Zhang) , 实际上它也是第三种电路的变形。 但这种电路还是留下了几个棘手问题: 低电压供电、 高电压输出, 并不适合于普通高压 应用; 能量需要在单元间多次传递, 效率会成为问题; 平衡动作时, 平衡电流冲击缺乏 限制机制; 所有电路元件需要紧密连接成整体, 难以实现模块化组合制造。
(4) 第六种电路, 模块化多电平变流 (MMC)
这类电路最早出现在 2003 年的 IEEE PowerTech Conference 会议论文上 (A. Lesnicar and R. Marquardt) 。 这种电路所需元器件的数量与电平数呈线性比例关系, 也适合于模块化制造, 特别适合于电力系统超高压应用(如轻型直流输电), 然而其模块 的均压控制还是很成问题, 因此实际应用尚不多见。 发明内容
针对上述多电平电路优缺点, 本发明根据高压、 大功率变流系统的特殊要求, 参考 蚕的爬行仿生学原理,提出一种基于自由伸缩臂的多电平变流拓扑及由此而构成的各式 变流电路, 而这种电路充分考虑了模块化实现及模块间的电应力的平衡问题。
蚕的身体由多个肢节组成, 在爬行过程中, 需要不断收缩和舒展身体。 容易想到, 蚕收缩或舒展时每一肢节的粗细有变化而体积并没有改变。作为仿生目标的变流桥臂可 看作是一对相连的蚕, 上、 下两个伸缩臂分别对应其中一条蚕, 伸缩臂中的每一变流单 元对应蚕身体的一个肢节。
当桥臂调节中点电位时, 是通过调节其伸缩臂中变流单元的开关来进行的, 调节过 程中各单元的储能水平并没有突变, 但单元的端电压可以迅速改变。 如果伸缩臂的端电 压 (由多个单元的端电压串联叠加而成)和能量分别对应蚕的长度和体积, 可以看出其 中点电位的调节, 非常像蚕的伸缩动作, 调节过程就像是伸缩臂的收缩或舒展。 两个伸 缩臂通过互补的收缩或舒展, 共同推动中点的变动。 利用这一原理就可以构造出崭新的 高压变流电路。
上述第六种电路实际上就是符合此种伸缩臂理念的一种拓扑, 但匪 c电路仅仅采用 了半桥电路作为变流单元,既不能实现单元自动均压,也不能在 AC/AC变流电路中使用。
为解决技术问题, 本发明提供了一种适用于高压应用的变流桥臂, 包括储能电容 C 与多个逆导型开关; 该变流桥臂由上伸缩臂 Bu、下伸缩臂 Bd和电感 Lb串联构成, 上伸 缩臂 Bu和下伸缩臂 Bd分别由若干个对称型单元级联构成;
所述的对称型单元: 由第一开关 Kl、第二开关 Κ2、第三开关 Κ3、第四开关 Κ4及储 能电容 C构成; 其中, 第一开关 K1与第二开关 Κ2、 第三开关 Κ3与第四开关 Κ4分别串 联; 第一开关 K1与第三开关 Κ3的正端相连作为单元的正端 ρ*, 第二开关 Κ2与第四开 关 Κ4的负端相连作为单元的 η*端; 储能电容 C接于正端 ρ*和负端 η*之间; 第一开关 K1与第二开关 Κ2的连接处为单元的第二级联端 Ζ12, 第三开关 Κ3与第四开关 Κ4的连 接处为单元的第四级联端 Ζ22 ;
所述若干个对称型单元的级联方式为: 相邻的两个单元之间, 前一单元的第四级联 端 Ζ22与后一单元的第二级联端 Z12相连;
桥臂的上、 下端分别为桥臂的 Ρ端和 Ν端;
上伸缩臂 Bu和下伸缩臂 Bd两端的外侧单元中: 引出其正端 p*和负端 n*作为变流 桥臂的辅助端; 并以其第二级联端 Z12为 p端、 第四级联端 Z22为 n端, p端、 n端的 排列与变流桥臂 P端、 N端的方向一致; 上伸缩臂 Bu的 n端与下伸缩臂 Bd的 p端之间的连线上引出桥臂的中点即 Ac端; 电感 Lb是下述形式中的任意一种:
( 1 ) 有一个电感 Lb, 位于上伸缩臂 Bu、 下伸缩臂 Bd的串联支路上的任何位置; ( 2 )有两个电感 Lb,分置于上伸缩臂 Bu、下伸缩臂 Bd的串联支路上 Ac端的两侧; ( 3 ) 有若干个电感 Lb, 分置于各对称型单元之中。
作为前述变流桥臂的应用, 本发明提出: AC调压器由一个或多个变流桥臂构成: AC调压器由一个变流桥臂构成的情况下, 该变流桥臂的 P端、 N端组成一个交流 端口, Ac端、 N组成另一个交流端口, 从而构成单相电子调压器; 或者,
AC调压器由多个变流桥臂构成的情况下, 各变流桥臂的 P端、 N端分别按照多边形 或星形接法引出一个多相交流端口,各变流桥臂的 Ac端分别引出另一个多相交流端口, 从而构成多相 AC/AC电子调压器。
基于相同的实现原理, 本发明提出一种改型的变流桥臂, 包括储能电容 C与多个逆 导型开关; 该变流桥臂由上伸缩臂 Bu、 下伸缩臂 Bd和电感 Lb串联构成, 上伸缩臂 Bu 和下伸缩臂 Bd分别由若干个单元级联构成; 所述的单元是平衡非对称型单元或平衡对 称型单元中的任意一种或两种;
所述平衡非对称型单元: 由第一开关 Kl、 第二开关 Κ2、 第三开关 Κ3、 第四开关 Κ4 及储能电容 C构成; 其中, 第一开关 K1与第二开关 Κ2、 第三开关 Κ3与第四开关 Κ4分 别串联;第一开关 K1与第三开关 Κ3的正端相连作为单元的正端 ρ*,该端同时也是单元 的第一级联端 Z11 ; 第二开关 Κ2与第四开关 Κ4的负端相连作为单元的负端 η*, 该端同 时也是单元的第四级联端 Ζ22; 储能电容 C的两端分别接于第一级联端 Z11和第四级联 端 Ζ22; 第一开关 K1与第二开关 Κ2的连接处为单元的第二级联端 Ζ12, 第三开关 Κ3与 第四开关 Κ4的连接处为单元的第三级联端 Z21 ;
所述平衡对称型单元: 由第一开关 Kl、 第二开关 Κ2、 第三开关 Κ3、 第四开关 Κ4、 第五开关 Κ5、 第六开关 Κ6、 第七开关 Κ7、 第八开关 Κ8及储能电容 C构成; 其中, 第一 开关 K1与第二开关 Κ2串联,其连接处为单元的第一级联端 Z11 ;第三开关 Κ3与第四开 关 Κ4串联, 其连接处为单元的第三级联端 Z21 ; 第五开关 Κ5与第六开关 Κ6串联, 其连 接处为单元的第二级联端 Z12; 第七开关 Κ7与第八开关 Κ8串联, 其连接处为单元的第 四级联端 Ζ22; 第一开关 Kl、第三开关 Κ3、第五开关 Κ5与第七开关 Κ7的正端相连作为 单元的正端 Ρ*, 第二开关 Κ2、 第四开关 Κ4、 第六开关 Κ6和第八开关 Κ8的负端相连作 为单元的负端 η*; 储能电容 C的两端分别接于正端 ρ*与负端 η*;
所述若干个单元的级联方式为: 相邻的两个单元之间具有两组级联端的连接关系, 具体为: 前一单元的第三级联端 Z21与后一单元的第一级联端 Z11相连, 前一单元的第 四级联端 Z22与后一单元的第二级联端 Z12相连; 其中, 有一组级联端是通过电感 Ls 或电阻 R或电感 Ls与电阻 R的并联电路实现连接的, 另一组级联端则是直接连接; 上伸缩臂 Bu和下伸缩臂 Bd两端的外侧单元中: 引出其正端 p*和负端 n*作为变流 桥臂的辅助端; 并以其第二级联端 Z12为 p端、 第四级联端 Z22为 n端, p端、 n端的 排列与变流桥臂 P端、 N端的方向一致;
上伸缩臂 Bu的 n端与下伸缩臂 Bd的 p端之间的连线上引出桥臂的中点即 Ac端; 电感 Lb是下述形式中的任意一种:
( 1 ) 有一个电感 Lb, 位于上伸缩臂 Bu、 下伸缩臂 Bd的串联支路上的任何位置; ( 2 )有两个电感 Lb,分置于上伸缩臂 Bu、下伸缩臂 Bd的串联支路上 Ac端的两侧; ( 3 ) 有若干个电感 Lb, 分置于各对称型单元之中。
作为另一种改型的变流桥臂, 所述伸缩臂由平衡非对称型单元级联构成; 相邻两个 单元中, 前一单元的第四开关 K4和后一单元的第一开关 K1的其中之一以二极管代替, 该二极管的极性与被代替的开关中逆导二极管的极性相同。
作为另一种改型的变流桥臂, 所述伸缩臂由平衡对称型单元级联构成; 相邻两个单 元中, 前一单元的第七开关 K7、 第八开关 Κ8和后一单元的第五开关 Κ5、 第六开关 Κ6 其中一个或两个以二极管代替, 且同一单元中的两个开关不能同时被二极管代替, 该二 极管的极性与被代替的开关中逆导二极管的极性相同。
作为另一种改型的变流桥臂, 所述伸缩臂由平衡对称型单元级联构成; 相邻两个单 元中, 前一单元的第七开关 Κ7、 第八开关 Κ8和后一单元的第五开关 Κ5、 第六开关 Κ6 其中一个或两个以二极管代替, 且同一单元中的两个开关不能同时被二极管代替, 该二 极管的极性与被代替的开关中逆导二极管的极性相同;
同时, 对被二极管替代的第五开关 Κ5、 第六开关 Κ6、 第七开关 Κ7或第八开关 Κ8 的连线方式改接: 第五开关 Κ5的正端、 第六开关 Κ6的负端改接到第二级联端 Ζ12, 第 七开关 Κ7的正端、 第八开关 Κ8的负端改接到第四级联端 Ζ22; 这种改接仅涉及替代的 二极管, 未被替代的开关不改接; 这里所述的正、 负端是指替换前的原开关的极性, 而 非指替代后的二极管的极性。
作为另一种改型的变流桥臂, 所述伸缩臂由平衡非对称型单元级联构成; 且相邻两 个单元中, 前一单元的第三级联端 Z21与后一单元的第一级联端 Z11直接连接, 前一单 元的第四级联端 Ζ22与后一单元的第二级联端 Z12直接连接; 前一单元的第四开关 Κ4 与后一单元的第一开关 K1中, 省略其中之一。
作为另一种改型的变流桥臂, 所述伸缩臂由平衡对称型单元级联构成; 且相邻两个 单元中, 前一单元的第三级联端 Z21与后一单元的第一级联端 Z11直接连接, 前一单元 的第四级联端 Z22与后一单元的第二级联端 Z12直接连接; 前一单元的第七开关 K7与 后一单元的第五开关 K5中, 省略其中之一;前一单元的第八开关 K8与后一单元的第六 开关 K6中, 省略其中之一。
作为另一种改型的变流桥臂, 其特征在于, 上伸缩臂 Bu的 n端单元与下伸缩臂 Bd 的 P端单元之间采用双线连接, 具体为: n端单元的第四级联端 Z22与 p端单元的第二 级联端 Z12直接连接, n端单元的第三级联端 Z21与 p端单元的第一级联端 Z11通过电 感 Ls或电阻 R或电感 Ls与电阻 R的并联电路实现连接。
作为另一种改型的变流桥臂, 其特征在于, 所述若干个单元的级联方式替换为: 相 邻的两个单元之间具有两组级联端的连接关系, 具体为: 前一单元的第三级联端 Z21通 过电感 Lsl与与后一单元的第一级联端 Z11相连, 前一单元的第四级联端 Z22通过电感 Ls2与后一单元的第二级联端 Z12相连; 电感 Lsl和电感 Ls2具有下述四种关系中的任 意一种:
( 1 ) Lsl、 Ls2为独立电感;
( 2 ) Lsl、 Ls2为耦合电感, 储能电容 C上的电压 Uc平衡电流在两个电感中的磁通 相互增强;
( 3 ) Lsl、 Ls2为独立电感, 其中之一并联了电阻 R;
( 4) Lsl、 Ls2为耦合电感, 储能电容 C上的电压 Uc平衡电流在两个电感中的磁通 相互增强, 其中之一并联了电阻 R。
作为所述变流桥臂的应用, 本发明提出: 变流电路具有常规的变流拓扑, 其特征在 于, 是以所述变流桥臂取代普通桥臂, 变流桥臂的上伸缩臂 Bu和下伸缩臂 Bd均由平衡 非对称型单元级联构成, 从而构成下述几种变流电路中的任意一种:
( 1 ) 由变流桥臂构成双向 DC/DC变流器, 变流桥臂的 P端和 N端接一个直流源的 正、 负端, 其 Ac端在串联一个滤波电感后和 N端接另一直流源的正、 负端;
( 2 )由一个或多个变流桥臂构成单相或多相 DC/AC或 AC/DC变流器,变流桥臂的 P 端、 N端分别并联为直流正、 负端, 各变流桥臂 Ac端分别为各相交流端;
( 3 ) 由两个或多个变流桥臂构成单相或多相背靠背 AC/DC/AC变流器, 变流桥臂的 P端、 N端分别并联为直流正、 负端, 第一组变流桥臂的 Ac端分别接第一交流源各相, 第二组桥臂 Ac端分别接第二交流源各相。
作为所述变流桥臂的应用, 本发明提出: 变流器是在变流桥臂上再接一个或多个伸 缩臂形成三相或多相变流器; 其特征在于, 所述伸缩臂和变流桥臂中的上伸缩臂 Bu、下 伸缩臂 Bd均由平衡对称型单元级联构成; 变流器的接法是下述接法中的任意一种: ( 1 )变流桥臂的 P端、 N端分别接三相电源的两相, 新增的伸缩臂一端接于变流桥 臂的 Ac端, 另一端接三相电源的另一相, 从而形成星形变流器; 进一步增加伸缩臂数 量则构成星形多相变流器; 或者
( 2 )变流桥臂的 P端、 N端并联上新增的伸缩臂并分别接三相电源的两相, 变流桥 臂的 Ac端接三相电源的另一相, 从而形成三角形变流器; 将多个伸缩臂串联后并联于 变流桥臂 P端、 N端则构成多边形多相变流器。
作为所述变流桥臂的应用, 本发明提出: AC/AC变流器具有一个或多个变流桥臂, 其电路结构是下述三种中的任意一种:
( 1 ) 单个变流桥臂的 P端、 N端为一个交流端口, Ac端、 N端为另一个交流端口, 从而构成单相 AC/AC变频器; 或者
( 2 )变流桥臂的 P端、 N端分别按照多边形或星形接法引出一个多相交流端口, 各 桥臂 Ac端分别引出另一个多相交流端口, 从而构成多相 AC/AC变频器; 或者
( 3 ) 第一组三个变流桥臂的 P端、 N端分别按照三角形或星形接法连接输入各相、 第二组三个变流桥臂的 P端、 N端分别按照三角形或星形接法连接输出各相; 两组的 Ac 端分别接三相中频变压器的原、 副边绕组, 从而构成电子变压器。
本发明还提出基于前述变流桥臂的变流控制方法: 通过调节各开关的驱动脉冲控制 伸缩臂内的各单元端电压 Us, 进而控制上伸缩臂 Bu、 下伸缩臂 Bd的端电压 Uu、 Ud; 通 过动态调节 Uu、 Ud之和控制流过变流桥臂 P端、 N端之间的平均电流 IPN, 进而控制变 流桥臂所有单元的 Uc之均值; 通过互补地调节 Uu、 Ud大小, 实现对 Ac端电位的调节; 通过动态调节 Uu、 Ud的相对大小改变流过上伸缩臂 Bu、 下伸缩臂 Bd的电流 IP、 IN的分 配, 进而平衡两者 Uc均值之差异; 通过调节上伸缩臂 Bu、下伸缩臂 Bd内的各单元端口 间电压台阶 Us的均值相对大小, 平衡伸缩臂中各单元的 Uc的差异。
作为改进的变流控制方法, 所述的单元的开关调制脉冲相位采取以下四种方式之
( 1 ) 同一伸缩臂中的各单元采用脉冲相位相同的控制方式; 或
( 2 ) 同一伸缩臂中的各单元采用脉冲相位递延的控制方式; 或
( 3 )同一伸缩臂中的各单元采用载波按圆周角等分移相的 SP丽调制,上伸缩臂 Bu、 下伸缩臂 Bd之间对应单元的载波相位互补; 或
( 4)对于三个桥臂构成三相 DC/AC、 AC/DC变流器, 各桥臂的同位单元六个一组采 用 SVPWM方式控制, 同一伸缩臂中的各单元调制载波按圆周角等分移相。
本发明有益效果与创新点
本发明解决了大多数高压多电平线路随着电平数的增加其复杂度也急剧增加的问 题; 还解决了无变压器级联多电平线路只能用于无功变流、 不能用于高压电机变频驱动 等有功变流的问题; 相比于变压器级联多电平线路, 本发明不再需要变压器提供多绕组 独立电源; 同时, 本发明也解决了平衡级联多电平线路不能同时适应高压输入 /输出变 流的问题。
本发明的优点在于:
( 1 ) 随变流器的电平数的提高, 其中所需的元器件数量随之线性增加, 线路复杂 度没有显著增加。
( 2 ) 模块化电路结构, 模块内部与模块之间电磁兼容性好。
( 3 ) 能够实现 AC/DC、 DC/AC, AC-DC-AC, DC/DC与 AC/AC等多种高压双向变流功 能, 能够执行有功与无功变流。
( 4) 系统具备单元电压自平衡功能, 安全冗余设计条件大为宽松, 安全可靠。
( 5 )输入 /输出能量交换与各单元直接关联,弱化了能量在各级模块间的宏观转移, 提高了效率。
( 6 ) 集高压、 高频化于一体, 可实现极高的等效工作频率, 显著降低设备电磁干 扰 (EMI ) 噪音, 极大降低滤波器的尺寸。
( 7 ) 高压电路启动十分简便, 无须设置专门的高压预充电线路。
( 8 ) 辅助供电可以从单元自身方便地获取, 无须高压隔离辅助电源。
基于上述可贵特点,本发明适合于多电平的中压、高压、甚至特高压的 AC/DC、 DC/AC, DC/DC的变流, 能够广泛应用于中 /高压变频、 电力电子变压器、 新能源直接并网、 智能 电网应用, 特别是适合于电力系统特高压的变流应用。 附图概述
图 1为多电平桥臂的构成;
图 2为桥臂中电感个数与位置;
图 3为平衡非对称型变流单元及其连接;
图 4为平衡对称型变流单元及其连接;
图 5为平衡型单元构成伸缩臂;
图 6为简化的平衡非对称型变流单元及其连接;
图 7为简化的平衡对称型变流单元及其连接;
图 8为伸缩臂同位单元;
图 9为平衡非对称型单元构成各种交 /直流线路;
图 10为对称型单元构成三相电子调压器;
图 11为由平衡对称型伸缩臂构成的 AC变流电路; 图 12为平衡对称型单元构成交 /交变频线路。 本发明的最佳实施方式
为更利于阅读, 本发明在此后的内容中省略了各开关、 级联端的顺序编号。 但其对 应关系仍可根据说明书内容及附图清楚、 毫无疑义地进行识别, 与发明内容部分的表述 保持了高度的一致。 特此说明。
1. 1伸缩臂与桥臂的基本原理
本发明的伸缩臂在阻断电压 /电流或直接导通方面与普通开关有所类似, 例如伸缩 臂的端电压可以呈现短接或断路状态。 伸缩臂还兼有限压的特性, 当伸缩臂呈现阻断状 态时, 如果有电流强行通过, 伸缩臂两端呈现为一个阻断电压。 储能电容 c上的电压为 Uc。 当伸缩臂快速阻断时, 线路上的杂散参数所引起的电压尖峰能够被伸缩臂的 C自然 地吸收, 电路有相当好的电磁兼容性。
伸缩臂与普通开关最大的不同点是, 通过开关的控制, 伸缩臂两端呈现的电压是可 控的, 可以是若干单元的 Uc之代数和; 若各单元开关以 P丽等脉冲方式控制, 伸缩臂 的端电压的平均值可以连续调节。
本发明提出的伸缩臂由变流单元级联构成。所谓变流单元, 如常见的 BUCK、 BOOST , BUCK-BOOST , 半桥、 全桥等拓扑, 以及在此基础上构成的更复杂的拓扑。 图 3、 图 4中 虚线框所标的都是变流单元的案例。 变流单元通过级联形成单个伸缩臂, 如上述第四、 第五种电路(即级联多电平和平衡级联多电平)都可以看作是一种伸缩臂。 本发明由单 元构成伸缩臂, 进而构成桥臂的过程如图 1所示。
桥臂的 P、 N两端能承受电压 UPN, 伸缩臂 Bu、 Bd承受的电压分别为 Uu、 Ud, 通过 脉冲控制其中的开关能够调节变流单元的级联电压 ( Us , 参见图 10 ) 从而能调节 Ac端 对 N端的电压 UA。N。 当桥臂采用非对称型变流单元时, UPN、 Uu、 Ud为正向电压; 当桥臂 采用对称型变流单元时,这些电压都允许为负, 即桥臂与伸缩臂具有正、负对称的极性。 本发明中伸缩臂、 桥臂、 开关都是假定上正、 下负排列, 这是为了叙述原理的方便; 若 改成上负、 下正排列, 功能也是一样的。
为抑制桥臂在调节过程中的电流冲击和脉动, Bu、 Bd之间串联电感 Lb是必须的, Lb可以放在串联支路上的任何位置, 或分裂成两个 Lb而分置于串联支路上 Ac的两侧, 也可以分裂成若干个电感分置于各个变流单元之中。 串联电感的位置和个数的不同, 仅 仅使电路特性略有差异, 但桥臂本身的工作原理没有本质上的区别, 图 2是其中的几个 案例。 对于电机驱动一类应用, 因电机负载本身有电感, 每一桥臂采用单个 Lb就可以 工作, 当用于一般性负载, 还是需要用两个 Lb来平滑桥臂各端的电流。 伸缩臂的外侧单元引出其正、 负 (P*、 n*)端作为桥臂的辅助端, 桥臂有两个伸缩 臂, 因而共有四对辅助端。 为叙述简单起见, 在附图的桥臂与伸缩臂中不再逐个画出。 这些辅助端是备用的, 例如在启动时低压电源可通过这些辅助向伸缩臂 Uc预充电。 这 些辅助端在上述由对称型单元构成的伸缩臂与桥臂中是无效的。
本发明的桥臂可以在各种桥式或类似电路中替代普通开关构成新电路。
1. 2伸缩臂的能量平衡原理
伸缩臂本质上是一个储能的开关, 只要不是短接状态, 电流会引起其中单元的 Uc 的变化。 因此, 伸缩臂用于通过交流电或脉冲电流; 除了短接外, 不能通过平稳的直流 电。 单元中 C的取值, 是以 Uc不发生显著变化为前提的(例如不超过 1-10%) , 这与电 流的大小有关, 对于交流电还与频率有关。 应用时应保持伸缩臂中各单元的 Uc维持基 本不变。
伸缩臂上的电流、 电压包含直流与交流或脉冲成分。 为实现变流功能, 需要满足: 1 ) 伸缩臂能量维持周期性平衡; 2 ) 桥臂能满足输入 /输出电压关系。
根据电工原理, 对于 DC/AC的输出调节中, 使伸缩臂上的电流与输出交流电压不产 生有功电流即可。为达到能量平衡,伸缩臂电压较低时(即收缩时)通过较大的电流(IN、 Ip) , 较高时 (即舒展时) 通过较小的反向电流; 与此相关, 通过伸缩臂的平均电流会 形成直流, 该平均电流值乘以输入桥臂电压就是电路的输入功率。
对于 AC/AC变流且输入 /输出频率不一样时, 伸缩臂上含有两个频率的交流电压叠 加成分。 根据电路原理, 两个不同频率的电压与电流不会产生有功电流, 因此只要通过 调节, 使输入 /输出两个频率在伸缩臂上的有功功率分别为零或相互抵消, 就能够维持 伸缩臂能量周期性平衡要求。
对于 AC/AC变流且输入 /输出频率一样的情况, 相当于变流器作为调压器的情况, 为了维持伸缩臂能量周期性平衡要求, 须使伸缩臂上的电流引起的有功功率为零。 如果 桥臂仅仅流过与 UPN相关的有功电流,伸缩臂上的电压相位应与此相差 90 ° ,因此 AC/AC 变流的变流会伴生输入 /输出电压的相移。
对于 DC/DC变流, 为避免伸缩臂能量的积累, 桥臂不能输出平稳的 DC电压。 然而, 桥臂还是能够输出脉冲的电压, 该假定输出电压为 UA。N。, 在一个周期中的前一时段输出 高于 UA。N。的电压, 在后一时段输出低于 UA。N。的电压, 并使一周期的平均值为 UA。N。; UAcN 较低时通过较大的桥臂电流 (IN、 IP) , UA。N较高时通过较小的反向电流, 以保持伸缩臂 的周期性能量平衡。 脉冲式的 DC/DC输出经过滤波, 就能变成平稳的 DC。
虽然前面的 AC/DC与 AC/AC的也需要滤波, 但输出纹波通常为 Uc大小的脉动而容 易滤除。从桥臂的 DC/DC变流原理看出, DC/AC与 AC/AC变流也可以采用脉冲方式工作, 用于电子调压器时也不会必然伴生输入 /输出电压的相移。 脉冲方式工作的缺点是输出 脉动大, 需要加强滤波。
符号 Uu、 Ud分别为 Bu和 Bd的端电压, UA。是桥臂中点 ^对 N端的电压。 IP、 IN、 IAc 分别为流过桥臂 P端、 N端和 Ac端的电流, IA。= IP - IN; 而 IPN则为流过桥臂的平均电 流 I(TM) = ( Ip + IN) /2。 参见图 1。
当桥臂的?、 N端接于直流电源的正、 负端时, Uu + Ud= UPN, 伸缩臂的特点是其两 端的电压迅速可变, 而其各单元中的储能电容电压 则相对稳定; 各单元端电压 Us的 改变引起 IP、 IN、 IA。的改变, 串联电感的存在限制了电流的变化率, 而电流的改变最终 会影响到 Uu、 Ud和 UAcN。
本发明通过多重管理实现对于 IP、 IN、 IA。、 Uu、 Ud和 UA。N等参数的统筹控制: ( 1 ) I(TM)的控制是通过调节 Uu、 Ud之和来实现的, 例如当 Uu + Ud& UPN时 IPN就会 增大。
( 2) 控制 UA。N时, Uu、 Ud的调节需要保持互补关系, 即 Uu 的增加与 Ud 的减少 基本相当, 这样才可以避免对流过桥臂的平均电流 I(TM)的扰动。
( 3) 输出平衡时, Ud =UAcN, Uu = UPN -U 。 通过调节 Uu、 Ud的相对大小, 就能 改变 IP、 1 勺分配, 从而改变 Ac端的电流 IAe。 例如增大 Ud并减小 Uu, 使 Ud &U 、 Uu & UPN - UAcN。 于是 IP变小、 IN变大, IA。也随之变小。
(4) 通过调节伸缩臂内的各单元端电压 (Us) 的相对大小, 可以平衡各单元 Uc 的差异。 实际上, 对于由非对称型和平衡对称型单元构成的桥臂, 其各单元间的 Uc差 值可以由其平衡功能得以抑制;但通过脉冲调节平衡各单元的 Uc,可以减少能量在个单 元间的过分流动, 以降低损耗。
从能量角度看, 控制了 I(TM)的就能控制桥臂的总能量, 也就是控制了桥臂中所有变流 单元的 Uc的平均值; 控制了 IP和 IN, 也就能够分别控制 Bu、 Bd中 Uc的平均值 IP、 IN。
上述控制目标中, 有些目标两者只能择一。 例如, UA。N与 IA。的控制目标只能实现其 一,前者对应 Ac端接独立负载(如接电机),后者对应 Ac端接电压源(如并在电网上)。 Uu、 Ud与 IP、 IN的关系也是类似, 不再赘述。
图 1的桥臂中, 两个伸缩臂之间仅仅只有一条连接线, Bu、 Bd之间不能传递能量, 这在 DC/DC以及极低频率下且要求平稳输出的交流变频, Bu、 Bd中 Uc的变化幅度可能 会过大。 由于 Uc的变化方向相反, 采取双线连接为 Bu、 Bd的能量交换提供了通道, 有 利于减小 Uc的变化幅度。 此种情况下 Lb电感位置不适合于放置在 Bu、 Bd连接处, 而 应移到 P、 N端, 以免干扰 Bu、 Bd之间的能量交换。
但是因 IP、 IN电流不等,两个伸缩臂之间发生的能量宏观转移有时可能会比较显著, 从而增加变流器的损耗。 在一些单元间有双线连接的伸缩臂中, 由于同一伸缩臂中单元 间的电流相等, 情况会显得轻微。 只要各单元偏离储能平衡点的情况是能接受的, 那么 也可以关断单元中相应的平衡开关 (如图 3的 K3, 图 4的 Κ5、 Κ7等) , 以减少损耗。
上述双线连接的另一好处是, 在桥臂启动时低压电源只要接桥臂的一对辅助端(例 如 Bd的 η端单元的 ρ*、 η* ) , 就可以完成向伸缩臂 Uc预充电。 参见图 9、 12。
1. 3对称型变流单元及其连接
本发明伸缩臂可以采用对称型变流单元 (如图 10虚线框所示) 构成的级联电路, 对称型变流单元可以采用普通全桥电路等常规对称型变流单元, 单元之间的级联通过一 条连线实现。 对称型变流单元具有 -1、 0、 1三个电平, 两个连接端点 Z12、 Z22完全对 称, 单元端口间的电压台阶为 Us (即 Z12、 Z22之间的电压) 。
本发明伸缩臂同于上述第四种电路。 当各变流单元均接上独立电源时, 伸缩臂可以 作为 DC/AC或 AC/DC变流应用; 当各变流单元没有独立电源时, 由于缺乏直流接入点, 伸缩臂只能实现交流无功变流 (例如 STATC0M和 APF应用) 。
然而, 以第四种电路作为本发明的伸缩臂, 由其和串联电感 Lb所构成的桥臂却可 用于 DC/AC或 AC/DC高压变流, 只是其中各变流单元的 Uc不会自动平衡, 其平衡控制 比较困难是其弱项。
1. 4平衡非对称型变流单元及其连接
本发明的平衡非对称型变流单元 (简称非对称型单元) 及级联的例子如图 3所示。 图 3中 Ls放在第一单元的 Z21与第二单元的 Z11之间, 其效果与放在第一单元的 Z22 与第二单元的 Z12之间是类似的,不再赘述。为方便起见,这里都以图 3为例说明原理。
变流单元工作时, 开关 K1与 K2不能同时开通, 同样地开关 K3与 K4也不能同时开 通。 为防止上、 下开关同时导通引起短路, K1或 K2 (以及 K3或 K4 ) 的开通动作有一死 区间隙, 时间稍微长于开关控制的误差时间, 在死区时间里一对开关均不导通。 单元级 联电压 Us为 Z12与 Z22之间的电压, 有 0、 1两个电平。 通过控制 Kl、 Κ2两个开关, 就可以对 Us进行控制。 例如: K1通而 K2断, Us为 U K1断而 K2通, Us为 0。 通过 控制开关在一个开关周期中的通断时间比例以及相位, 就可以控制变流单元的 Us平均 值, 从而起到变流调节作用。 K1 与 K2均断开, 是一个特殊状态, 没有电流通过时 Us 是不确定的; 若有电流通过 K1的逆导二极管, 则 Us呈现为 Uc。
由于在平衡非对称型变流单元构成的伸缩臂中, 采用了相邻单元上下错位的接法, 每个单元的可以利用的电平为 0和 1, 1电平对应 1个 Uc。 N个变流单元级联后形构成 的伸缩臂具有 N+1电平, 由两个伸缩臂构成的桥臂, UA。N的可控电平数仍为 N+l。 例如两 个平衡非对称型变流单元级联后, 伸缩臂的 3个可控电平分别为 0、 Uc、 2Uc。 在非对称型变流单元中, K3、 Κ4 是作为平衡用的。 变流单元级联时, 相邻单元的 Uc的差别会通过相邻相关开关(即相邻单元的相关开关)进行电荷转移来实现自动均压。 图 3中左边单元的 K3、 Κ4、 以及右边单元的 Kl、 Κ2全都属于相邻相关开关。
在相邻相关开关中, Κ2、 Κ3开关接通时, 通过开关将两个相邻单元的 C并接使两个 Uc趋同, 其中 Ls或 R都是起限制均压电流冲击作用的。 与 Ls并联时, R的作用是抑制 平衡电流在单元间的振荡。例如取 R2〈Lsl/C就可以有效地抑制这种振荡,但采用 R会增 加一些损耗。 单独用 R代替 Ls, 会增加功耗。 为叙述简单起见, 附图中仅仅列出了使用 Ls连接的一种情况。 当平衡电流过大时, 还可以通过控制 K2、 Κ3的导通时间来加以限 制。 Κ2、 Κ3关断时 Kl、 Κ4的逆导二级管提供续流通道。 Κ3、 Κ4仅仅流过平衡电流时, 其功率容量要求会低于 Kl、 Κ2。
由非对称型变流单元级联构成的伸缩臂, 单元之间可以通过级联端口交换能量, 自 动平衡单元的 Uc电压。
伸缩臂 n端单元的 K3、 Κ4不是必要的, 但从中引出的 η' 可以用于 Bu、 Bd之间的 Uc平衡。 容易想到将 K3、 Κ4利用起来, 用 η ' 端代替 η端作为伸缩臂的负端, 可以为 η端单元(及伸缩臂)增加一个 -Uc电平, 使伸缩臂具有一个 Uc反向电压阻断能力, 以 下说明不再赘述。
1. 5平衡对称型变流单元及其连接
图 4是本发明的平衡对称型变流单元及级联的例子。图 4中 Ls放在第一单元的 Z21 与第二单元的 Z11之间,其效果与放在第一单元的 Z22与第二单元的 Z12之间是类似的, 不再赘述。 为方便起见, 这里都以图 4为例说明原理。
变流单元工作时, 开关 K1与 K2不能同时开通, 同样地开关 K3与 K4、 Κ5与 Κ6、 Κ7 与 Κ8也不能同时开通。 为防止上、 下开关同时导通引起短路, K1与 Κ2 (以及 Κ3与 Κ4、 Κ5与 Κ6、 Κ7与 Κ8 ) 的开通动作有一死区间隙, 时间稍微长于开关控制的误差时间, 在 死区时间里一对开关均不导通。 单元级联电压 Us为 Z12与 Ζ22之间的电压, 有 0、 1、 -1三个电平。 通过控制 Kl、 Κ2、 Κ3、 Κ4四个开关, 可以对 Us进行控制。 例如: Kl、 Κ4 通, 而 Κ2、 Κ3断, Us为 Uc; Kl、 Κ4断, 而 Κ2、 Κ3通, Us为- Uc; Kl、 Κ3通, 或 Κ2、 Κ4通, Us均为 0。通过控制开关在一个开关周期中的通断时间比例以及相位, 就可以控 制变流单元的 Us平均值, 从而起到变流调节作用。 Kl、 Κ2、 Κ3与 Κ4均断开, 是一个特 殊状态, 没有电流通过时 Us是不确定的; 若有电流通过 Kl、 Κ4的逆导二极管, 则 Us 呈现为 Uc; 若有电流通过 K2、 Κ3的逆导二极管, 则 Us呈现为 -Uc。
在平衡对称型单元中 K5、 Κ6、 Κ7、 Κ8是用于平衡的, 变流单元级联时, 相邻单元 的 Uc的差别会通过相邻相关开关进行电荷转移来实现自动均压。图 4中左边单元的 K3、 K4、 K7、 Κ8以及右边单元的 Kl、 Κ2、 Κ3、 Κ4全都属于相邻相关开关。
在相邻相关开关中, Κ3与 Κ7或 Κ4与 Κ8同时开通时, 左边单元的连接端口 Ζ21、 Ζ22之间呈零电平; K1与 Κ5或 Κ2与 Κ6同时开通时, 右边单元的连接端口 Zl l、 Z12之 间呈零电平; 当 Κ3与 Κ8或 Κ4与 Κ7同时开通时, 左边单元连接端口 Ζ21、 Ζ22之间分 别呈 1与 -1电平; 当 K1与 Κ6或 Κ2与 Κ5同时开通时, 右边单元的连接端口 Zl l、 Z12 之间呈 1与 -1电平。 只有控制两边端口的电平一致, 才能使两个相邻单元的 Uc平衡得 以正常进行、 电压趋同, 其中 Ls或 R是起限制均压电流冲击作用的。 与 Ls并联时, R 的作用是抑制平衡电流在单元间的振荡。 例如取 R2〈Lsl/C就可以有效地抑制这种振荡。 单独用 R代替 Ls, 会增加功耗。 为叙述简单起见, 附图中仅仅列出了使用 Ls连接的一 种情况。 当平衡电流过大时, 还可以通过对 K5、 Κ6、 Κ7、 Κ8 的导通时间来加以限制, 这些开关关断时情况与非平衡型类似, 不再赘述。 Κ5、 Κ6、 Κ7、 Κ8仅仅流过 Ls的平衡 电流时, 其功率容量要求会低于 Kl、 Κ2、 Κ3、 Κ4。
1. 6平衡非对称型与平衡对称型变流单元的简化、 单元间连接及应用特点 图 6是简化的平衡非对称型变流单元及级联的例子, 单元中 Κ4简化为二极管; 对 于单元中 K1简化为二极管的情况, 效果是类似的, 参见图 9。 图 7是简化的平衡对称型 变流单元及级联的例子, 单元中 Κ6、 Κ8简化为二极管。 在上述简化电路中, 因 Ls的电 流不可能通过开关维持循环, 平衡电流的控制模式有所差别。
简化并将二极管端子改接的平衡对称型变流单元的例子参见图 12, 如单元中 K6、 Κ8二极管所示。 这一改接并没有影响 Ls的续流功能, 但平衡电流通道的缩短能减少一 些损耗。 将平衡非对称型相邻单元之间 Z21与 Z11直接连接的做法, 可以节省元件。 这 种连接所构成的伸缩臂类似于上述第五种电路, 用于构成桥臂则属于本发明, 缺点是平 衡电流缺乏限制机制;优点是便于将伸缩臂集成到一个模块中,便于高压小功率的应用。 将对称型相邻单元之间 Z21与 Z11直接连接的做法, 效果类似, 不再赘述。
对于由非对称型单元与平衡对称型单元两者混合级联构成的伸缩臂,其中的单元也 可以参照上述做法来简化, 不再赘述。
上述简化, 一般不针对伸缩臂两端的外侧开关。
当单元间通过两个电感连接时, Lsl、 Ls2可以取相同的值。采用独立电感的好处是 可以将串联电感 Lb分散到单元之间, 变流器不再需要大电感。 耦合电感连接的案例参 见图 12, Lsl、 Ls2同名端接法是使 Uc平衡电流在两个电感中的磁通相互增强, 从而增 加单元间的差模电感量。 采用耦合电感的好处是, 单元间的宏观电流(即 IP或 IN)所引 起的磁通在耦合电感内相互抵消, 从而可以减小连接电感的体积。
当单元间采用两个连接电感时, 实际上两条连接线处于对等的情况, 非对称型与平 衡对称型单元中不再指定用于平衡的开关, 所有开关平等地参与功率传输与 Uc平衡, 这对提高单元的变流功率是有利的。
R为阻尼电阻, 其作用是抑制平衡电流在单元间的振荡。 例如对于独立电感情况, 取 R2〈2Ls l/C就可以有效地抑制这种振荡。
1. 7平衡非对称型与平衡对称型变流单元的应用特点
由平衡非对称型变流单元与平衡对称型变流单元同属平衡型变流单元, 由平衡型变 流单元构成伸缩臂的例子参见图 5。 平衡对称型变流单元结合了平衡变流单元与对称型 变流单元两者的优点, 它能够实现各单元之间 Uc的平衡, 两边的级联端又具有对称性。
对称型与平衡对称型单元所构成伸缩臂、 进而构成的桥臂, 主要应用于 AC/AC (包 括交流有功与无功变流) , 还可以应用于 AC/DC或 DC/AC变流。 例如在 AC/AC变流中, Bu与 Bd若取相等的单元数 m,此时伸缩臂的 UPN和桥臂的 UA。N的电平数均为 2*m+l。对于 AC/DC或 DC/AC变流, 若 UPN〈m*Uc, 则 UA。N的幅度可以超出 UPN, 即交流电压幅度大于直 流电压源!
由平衡非对称型单元所构成伸缩臂、进而构成的桥臂,可用于 AC/DC与 DC/AC变流。 若利用 n ' 作为伸缩臂的负端, 由于 Ac点的电压可以上、 下超越 UPN各一个电平, 对于 AC/DC/AC的变换而言, 可以更充分利用 DC电压幅度。
将平衡非对称型单元与平衡对称型单元两者混合级联构成伸缩臂、 进而构成桥臂, 比较适合于在 AC与 DC电压有混叠的情况下应用。 例如, 在 DC/AC变流电路中, 当 AC 输出电压高于 DC输入电压时可采用混合级联伸缩臂。
1. 8变流桥臂的脉冲控制方式
在满足桥臂中各变流单元 Uc 的平衡要求前提下, 本发明的开关脉冲控制方法可以 是多种多样的。 实际上, 一些用于普通二电平逆变桥的许多脉冲调制方案都可以用于本 发明的变流桥臂的控制, 例如阶梯波形法(低次谐波含量最小法、指定谐波消除法等)、 脉冲宽度调制 (PWM) (包括消谐波法、 开关频率优化法、 相移脉宽调制法和空间矢量 调制方法以及脉冲幅值调制法) 。 相对而言, 正弦波脉冲宽度调制 (SPWM) , 特别是其 中的正弦相移脉宽调制法是比较适合本发明的脉冲控制。
所有变流单元的对应开关动作可以是同步的 (例如所有单元的 K1都是同步的) , 但是这会使 Ac点的电压变化率很高, 不利于电磁兼容性, 电路也往往需要配置很大的 滤波器。 这种做法的优点是, 单元的储能电容 C取值很小也能工作。
若是所有变流单元的对应开关相互间前后动作依次稍微相差一点(例如 1微秒), 即 相邻单元间脉冲相位递延, 就可以使电压上升、 下降有一斜坡, 有利于降低对于电源和 负载的冲击。 对于同一伸缩臂中的各单元采用脉冲相位相同或是相位递延的控制方式,相当于用 伸缩臂替代高压功率半导体开关, 相比于低耐压功率半导体开关的直接串联, 其均压控 制要可靠得多。
若是所有变流单元的对应开关按照同一个开关周期,相位依次前后错开一个相等的 角度, Ac点可以产生最为平缓的电压波形, 开关纹波的频率为变流单元开关频率乘以级 联的变流单元个数, 这种方法称之为正弦波移相脉宽调制。 例如, 对于 19 电平的三角 波载波 SPWM情况, 每一载波相互错开了 20 ° , 如果每个变流单元的开关频率为 10kHz, 伸缩臂的等效开关频率可达 180kHz。
桥臂中, 由于需要上、 下伸缩臂的承受电压总和保持不变 (为直流电压) , 因此两 个伸缩臂的对应开关动作是互补的。 桥臂中的两个伸缩臂、 多相桥臂之间的相位错开的 合理安排, 都有利于开关纹波的进一步抑制, 以显著减轻变流器对滤波电路的需求。
一般地, 若伸缩臂中所有变流单元的开关采取同步动作, 因开关特性不一致等只会 激发起 Uc微弱的不平衡动力, 即使没有 Ls或 R, 问题也不严重; 但对于采取递延、 甚 至移相工作, 会引起 Uc较大的不平衡动力, 本发明的平衡机制能有效解决这一问题! 本发明的三相变流线路不仅可以采用上述正弦波移相脉宽调制, 也可以采取常规的 三相六开关变流器所用的正弦波空间矢量调制方法 (SVPWM) 和移相 SVPWM 方法, 在 DC/AC, AC/DC变流中应用均可提高电路的电压利用率。
具体做法一例: 把三相桥臂中的每一伸缩臂看作是常规二电平的一个开关, 将常规 空间矢量调制方法用之于桥臂中的每一单元, 并且级联中的所有变流单元采用同一个开 关周期, 三个桥臂中的同位单元相位依次每组前后相互错开一个相等的角度, 这样三个 Ac点之间可以就产生最为平缓的正弦电压波形,同时又能利用空间矢量调制方案中直流 电源电压利用率高的优点。 图 8是关于伸缩臂中的同位单元划分的案例, 图中的三个伸 缩臂,分别是图 9中三个桥臂的三个伸缩臂 Bu,虚线框住的三个一组的变流单元即为同 位单元; 另外, 在三个桥臂的另外三个伸缩臂 Bd中还有对应的另三个同位单元; 因此, 每组同位单元共有六个。
1. 9由变流桥臂构成各种变流器
本发明非对称型桥臂可以作为双向 DC/DC变流使用。 Ac端在 DC/DC变流应用中为直 流端之一, 在 DC/AC应用中则为交流端。 作为 DC/DC应用时, 若?、 N端口为输入端, Ac (串联一个滤波电感后) 、 N为输出端, 就构成了降压型 DC/DC变流器; 反之, 若 Ac (串联一个滤波电感后) 、 N为输入端, P、 N端口为输出端, 就构成了升压型 DC/DC变 流器。 由于伸缩臂一般不适合于维持平稳直流 (IP或 IN) , 若依靠 Bu、 Bd之间的双线 连接其能量交换效率又比较低, 因此在 DC/DC电路中 UA。N的输出往往为脉冲电压, Ac端 串接滤波电感是必要的。
作为交流应用时, 桥臂在 N (或 P )与 Ac之间形成交流电压, Ac为交流端口。 本发 明的方案可以用于 DC/AC与 AC/DC的三相变流, 但不仅限于三相。
三个桥臂直流端共用一个直流电源,就可以在三个桥臂的 Ac端形成三相电压。图 9 所示其中一例是高压整流 /逆变电路, A、 B、 C是电网三相输入点, 电网经过整流器给本 发明的三相逆变桥提供直流电, 逆变侧 a、 b、 c点输出三相高压变频电压驱动电机。 该 高压整流 /逆变电路输出通常为正弦波电压, 其实同样可以输出方波或梯型波电压以驱 动无刷永磁电机一类负载。
图 9另一案例是用于光伏并网逆变的 DC/AC变流电路, 其中的 Ac端控制目标是并 网电流。
由两个背靠背三相逆变电路构成的高压变频电路是图 9 中所示的又一案例。
AC-DC-AC整流 /逆变的变流电路,俗称背靠背高压变频器,第一组三个桥臂的 Ac引出三 相交流端, 另一组三个桥臂的 Ac引出第二个三相交流端, 可用于高压电机的无变压器 高功率因数变频驱动, 也可应用于电力系统的输配电变流。
在 DA/AC与 AC/DC变流应用中, 通常 Bu与 Bd中取相等的单元数以节省单元; 但对 于 DC/DC的应用, 则根据输入 /输出电压的比例而可以有所不同。
对于多相星形接法, 可以将多个桥臂的 P端作为各相输入端, 各桥臂的 Ac端作为 个相输出端, 将多个桥臂的 N端连接在一起作为输入和输出的共同中性点。 对于多相多 边形接法, 可以将多个桥臂的 P端、 N端依次相连并将连接点作为各相输入端, 各桥臂 的 Ac端作为各相输出端。
对于三相而言, 星形接法就是 Y接法, 多边形接法就是三角接法。 图 10是一个采 用 Y接法的三相电子调压器。 在图 10的三个桥臂公共连接点引出中线, 也可以构成三 相四线接法。 该电路属于能量可以双向流动的三相电路, 可以具有电子调压功能。 输入 端 (A、 B、 C) 送进交流电, 输出端 (a、 b、 c ) 可以获得同频率的交流电。 当 Bu、 Bd 的单元数相等时, 通过控制伸缩臂的开关 (Kl、 Κ2、 Κ3、 Κ4 ) , 可以获得变比为 0到 2 (理论值)的调压功能; 该电路也可以反过来应用, 变比大致为 2到 10。 当应用的输入 /输出比例比较接近且采用 SP丽控制时, Bu的单元数可以少于 Bd, 以节省单元; 此时, 类似与自耦变压器, 通过 Bd的电流显著低于 Bu。
电子调压器具有调压、 调相、 纠正不对称等功能, 是一种变比非常灵活、 具备双向 调压功能的装置, 可以用于电力系统重要负载的配电调压。
图 11 ( a) 、 ( b )分别是由对称型伸缩臂构成的 Y形与三角形变流器例子, 其中每 一伸缩臂的单元数可以取为相等。 对称型单元构成的伸缩臂能够用于构成三相无功变 流, 这其实就是前面所说的第四种变流电路。 本发明采用由平衡对称型单元级联构成的 伸缩臂, 可以解决第四种电路中所遇到的单元储能电容电压平衡的困难, 应能很好地用 之于交流无功的应用。 容易理解, 进一步增加伸缩臂可以构成多相星形或多边形无功变 流器。
从原理上而言,对称型单元也可用于 AC/AC变频,但由于变频电路的平衡控制复杂, 还是采用平衡对称型单元比较可靠。 图 12中的 Y接法 AC/AC变频器, 形式上与图 10中 电路类似, 但增加了变频功能。
对于单相和星形接法的 AC/AC变频器, 在输入 /输出变比大致为 1的情况, 考虑到 同一桥臂上有时输入与输出电压会幅度接近而方向相反,取 Bu的单元数为 Bd的两倍是 合适的。
图 12中还分别给出了 Y形与三角形接法的电子变压器。 对于三角接法, Bu与 Bd 的单元数比例为 1 : 1是合适的; 对于 Y形接法, Bu与 Bd的单元数比例取 2 : 1更为合 适的。 采用 AC/AC的拓扑确实比常规背靠背的 AC/DC/AC要节省单元数 (比例大致是 3 : 4 ) 。
在本发明的电子变压器中, AC/AC不仅可以采用常规的正弦 /正弦变频, 也可以采用 正弦 /方波变流, 使中频变压器在方波下工作, 以提高变流效率。 由于采用的中频 (例 如 5kHz ) 远高于工频 (50Hz ) , 变压器的体积大为缩小。
1. 10 说明与实施案例
各图中的符号 P ' 与 n ' 分别是非对称型与平衡对称型单元的 Z11与 Z21,它们出现 在伸缩臂的外侧单元上 (分别是 、 n端单元) 。 各图中的符号 m是伸缩臂的单元数, ml、 m2分别是 Bu、 Bd的单元数。
作为本发明的延伸, 以本发明的一个特别的伸缩臂 (这里称作为微型伸缩臂)替代 本发明的一个开关, 进而构成伸缩臂、 桥臂和变流系统。 微型伸缩臂中的各单元的对应 开关(例如所有 K1 ), 采取脉冲相位相同控制方式, 微型伸缩臂的电容量便可远小于伸 缩臂中单元的电容, 便于采用模块化封装。 实际上, 微型伸缩臂可用作高压开关, 易于 构造出更高电压等级的变流系统。
本申请提出的上述各项发明内容可以单独或混合实施。 图 9、 图 10、 图 11、 图 12 都是本发明的实施例。 以下详述其中两个实例。
( 1 ) 一种十一电平的无变压器高压变频器
如图 9中的背靠背高压变频器所示, 其中 A、 B、 C为输入三相电压, a、 b、 c为输 出三相电压。 该电路为背靠背的 AC/DC/AC的变流结构; 采用平衡非对称变流单元构成 伸缩臂; 在上下伸缩臂之间采用上述 1. 2所述的加 Ls双线连接; 两组三相桥臂均以上 述 1. 8所述的 SVP丽方式工作,单元开关频率为 10kHz,伸缩臂的等效开关频率为 100kHz。 每个伸缩臂的单元数为十个, 桥臂的电平数为 11。 该电路用于组成三相高压变频驱动, 若每一电平为 2000V, 则线电压可达 14. lkV交流。
启动时可以在 Bd的 n端单元的 p*与 n*之间 (或 Bu的 p端单元的 p*与 n*之间)加 一低压电源, 并收缩 Bu与 Bd, 对各单元的 C充电上电后再舒展伸缩臂, 桥臂就可以直 接投切到高压, 不需要专门的高压预充电线路。 另外 Bu、 Bd之间若为双线连接, 也是 有利于简化启动控制的。 对于启动电源而言, 若将图 9中 Bd下方的 Lb移到桥臂的 Ac 端会比较有利些, 因该 Bd由非对称单元构成, 其 n端单元的 n*就是桥臂的 N端, 桥臂 也只要多引出一个 Bd的 n端单元的 p*端。
(1)一种十五电平的电子调压器
如图 10所示, 三个桥臂对应三相调压,每一桥臂由 Bu、 Bd两个伸缩臂和两个 Lb构 成, 伸缩臂由七个对称型变流单元构成。 由于每一变流单元具有三个电平, 考虑到重叠 的七个零电平, 伸缩臂具有十五个电平。该电路的单元开关频率为 5kHz, 单元间采用移 相 SVP丽调制, 伸缩臂的等效开关频率为 35kHz。 若每一电平为 4000V, 则调压器的线 电压可达 39. 6kV交流。
(2)由非对称单元与对称单元混合级联合构成的光伏并网逆变电路
值得一提的是, 图 9的高压整流 /逆变电路中, 若 DC输入电压不够高, 则组合开关 中采用非对称型单元与平衡对称型单元两者混合级联, 电路可以较好地实现升压变流功 能。 可以选取其中非对称型单元 Uc的串联电压等于 DC电压, 平衡对称型单元 Uc的串 联电压为略高于 AC幅度超过 DC的部分。 当输出电压超过 DC电压时, 伸缩臂能够承受 这一反向电压。例如, 组合开关中采用 10个非对称单元、 5个对称单元混合级别联, 若 每一电平为 2000V, 在 DC电压为 20kV下, 用于并网发电时可利用的桥臂中点输出电压 峰-峰值可以达到 30 kV。 工业应用性
本发明适合于多电平的中压、 高压、 甚至特高压的 AC/DC、 DC/AC, DC/DC的变流, 能够广泛应用于中 /高压变频、 电力电子变压器、 新能源直接并网、 智能电网应用, 特 别是适合于电力系统特高压的变流应用。
& 2004-. All rights reserved.

我要回帖

更多关于 电子元器件型号规格 的文章

 

随机推荐